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Inversion Scheme

A nonlinear inverse problem is generally solved by iteratively minimizing the discrepancy

between data d and the model response f(m), normalized by the standard deviations εi of the

data ∑
i

∣∣∣∣di − fi(m)

εi

∣∣∣∣2 =
∥∥D(d− f(m))

∥∥2

2
→ min with D = diag(ε−1

i ). (1)

Multi-dimensional problems are generally ill-posed considering data errors. Therefore, one has

to introduce regularizing constraints like smoothness (Constable, Parker, & Constable, 1987)

or a-priori-information (Jackson, 1979). This can be accomplished by additionally minimizing

a semi-norm ‖C(m−m0)‖, weighted by a regularization parameter λ∥∥d− f(m)
∥∥2

2
+ λ

∥∥C(m−m0)
∥∥2

2
→ min . (2)

The matrix C represents the expectations to the model, e.g., smoothness constraints. m0 is

the reference or a-priori model. The application of the Gauss-Newton method leads to an

iterative scheme mk+1 = mk + ∆mk solving the regularized normal equations(
(DS)TDS + λCTC

)
·∆mk = (DS)TD (d− f(mk))− λCTC(mk −m0) . (3)

Note, that for a local regularization scheme effecting the model update ∆m instead of the

model m the latter term vanishes. The Jacobian or sensitivity matrix S contains the partial

derivatives of the model response with respect to the model parameters

Sij =
∂fi(m)

∂mj

.

With Ŝ = DS the equation (3) can be written using generalized inverse matrices Ŝ† and C†

∆m = Ŝ†D∆d−C†C(mk −m0) with (4)

Ŝ† = (ŜT Ŝ + λCTC)−1ŜT and C† = λ(ŜT Ŝ + λCTC)−1CT .

Note, that Ŝ†Ŝ + C†C = I.



The Model Resolution

The data are superposed by the response of the true model mtrue and the noise n

d = f(mtrue) + n . (5)

Assuming in the kth iteration the model mk is already close to the true model, a linearized

Taylor expansion of f(mk) yields

d = f(mtrue) + n = f(mk) + S(mtrue −mk) + n . (6)

By insertion of d− f(mk) from equation (6) into equation (4) we obtain for mest = mk+1

mest = mk + Ŝ†SD(mtrue −mk)−C†C(mk −m0) +Ŝ†Dn

= mk + Ŝ†Ŝmtrue − (Ŝ†Ŝ + C†C)mk + C†Cm0 +Ŝ†Dn

= RMmtrue + (I−RM)m0 +Ŝ†Dn . (7)

The model estimate mest is constructed of the true model, the starting model and noise

artifacts. The matrix RM = Ŝ†Ŝ combining the procedures of measurement and inversion

is called resolution matrix. It serves as a kernel function transferring the reality into our

model estimate and can be calculated using the generalized singular value decomposition

(Friedel, 2003). Alternatively, the model resolution can be approximated by conjugate gradient

techniques (Alumbaugh & Newman, 2000).

The individual columns of RM can be plotted like the model vector and display, how an

anomaly in the respecting model cell is imaged by the combined process of measurement and

inversion. For example, the element RM
ij reveals, how much of the anomaly in the jth model

cell is transformed into the ith model cell. Figure 1 displays the model cell resolutions for 4

selected parameters of a 2D profile.
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Figure 1: Model cell resolutions (in %) for 4 selected parameters, the cells are marked by black

rectangles



The resolution equation (7) is directly linked to the idea of Oldenburg and Li (1999) defining

the depth-of-interest (DOI) index. It reveals, to what degree the model parameters are deter-

mined by the starting model. The diagonal element RM
ii states, how much of the information

is saved in the model estimate and can be interpreted as resolvability of mi. In Figure 2 the

distribution of the RM
ii corresponding to Figure 1 is shown.
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Figure 2: Model resolution of the individual model cells (in %)

Adding up all the diagonal elements we obtain a total information of the inverse process, the

information content

IC =
M∑
i

RM
ii . (8)

Dividing the information content by the number of data N or model parameter M we obtain

the information efficiency IE or the resolution degree RD, respectively.

IE =
IC

N
and RD =

IC

M
. (9)

References

Alumbaugh, D. L., & Newman, G. A. (2000). Image appraisal for 2-d and 3-d electromagnetic

inversion. Geophysics, 65 (5), 1455-1467.

Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: a practial al-

gorithm for generating smooth models from electromagnetic sounding data. Geophysics,

52, 289-300.

Friedel, S. (2003). Resolution, stability and effiency of resistivity tomography estimated from

a generalized inverse approach. Geophys. J. Int., 153, 305-316.

Jackson, D. D. (1979). The use of a priori data to resolve non-uniqueness in linear inversion.

Geophys. J. R. astr. Soc., 57, 137-157.

Oldenburg, D. W., & Li, Y. (1999). Estimating depth of investigation in dc resistivitiy and

ip surveys. Geophysics, 64 (2), 403-416.


	References

