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Impedance tomography

The problem of electrical impedance tomography is characterized by the continuity equation
for the electric potential u

∇ · (σ∇u) = 0 (1)

in a bounded domain Ω, on whose boundary Γ the condition

σ
∂u

∂n
= j (2)

holds. The task is to reconstruct the conductivity σ from measured boundary voltages for
a series of applied current functions j. It thus represents an inverse parameter problem on
an elliptic partial differential equation. Instead of the conductivity one often employs the
reciprocal ρ = 1/σ, the resistivity. Analog to rocks, it can vary over several decades of
magnitude within trees.

Typically one employs a preloaded chain of point-wise assumed electrodes. A current is
injected by two adjacent electrodes and voltages are measured on the possible other elec-
trode pairs. This method corresponds to the dipole-dipole method in geoelectrics. Of course
other configurations are possible and recommendable, indeed the dipole measurements show
superior resolution properties. A measured impedance, which is the voltage ∆u per current
strength I, is transformed into an apparent resistivity ρausing a configuration factor k

ρa = k
∆u

I
.

Its advantage is not only the comparability of different configurations. Since data and
model obtain the same physical unit, the inverse problem can be easier handled. The inversion
problem is non-linear. Therefor the model is changes iteratively until the measured data can
be accounted. The domain is sub-divided into elements of constant resistivity. The size of the
elements should comply with the physical resolution and must not be nonsensically small.

Forward calculation

A fundamental module of the inversion is the simulation of potentials for a given parameter
distribution. Since except for a few special cases there is no analytical solution in general we
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solve (1) approximatively with the method of finite differences (FD) or finite elements (FE).
The main problem are the point-like electrodes which cause an infinite current density at
the electrodes. At this position the potential decreases with 1/r-behavior and can only be
approximated well by a mesh which is highly refined.

A remedy is the singularity removal technique. The potential is decomposed into a singular,
but known, part up, the primary potential, and the unknown, but regular, secondary potential
us.

For us the partial differential equation

∇ · (σ∇us) = ∇ · ((σ0 − σ)∇up (3)

holds with the boundary condition

σ
∂us

∂n
= (σ0 − σ)

∂up

∂n
. (4)

σ0 is a homogeneous conductivity distribution with the value at the electrode. For exact
circle geometry we can calculate up analytically. Since the singular current density was
removed we can solve for us on a moderate mesh which saves a lot of computing time. When
the boundary departs from the circle form up is not known. However, since the calculation
of us has to be carried out many times it the determination of up is put into perspective.

Thus the triple-grid technique works: A relatively coarse parameter mesh defines the cells
whose resistivities are to be determined. The forward calculation is accomplished on a finer,
globally refined secondary field mesh in every iteration. On the locally highly refined primary
field mesh the primary potential is calculated once in the beginning of the inversion. As a
byproduct we obtain the topography effect. It reveals, how the tree shape affects without
consideration of inhomogeneities. So the true configuration factors are determined.

Inversion

For quantification of the inverse problem we define the model vector m. The individual
elements mj characterize the cell resistivities ρj. In order to avoid negative resistivities often
their logarithm is chosen mj = log ρj. Similarly we proceed with the measurements The data
vector contains the logarithms of the apparent resistivities di = log ρa

i . To each data point
an error value εi is attributed which has either been measured or estimated.

The inversion is bases on the error-weighted least squares minimization of the discrepancy
between data and forward response f .

Φd =
N∑

i=1

di − fi(m)

εi

= ‖D(d− f(m))‖2
2 → min . (5)

The matrix D contains the reciprocals of the error values on the main diagonal. The
minimization of Φd is an incorrectly posed problems. Actually there exist a variety of models
satisfying the data within error bounds. We regularizing the problem by introducing an
additional functional of constraints

Φm = ‖C(m−m0)‖2
2 , (6)
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the matrix C may represent a discrete derivation operator such that smooth models are
privileged. We minimize the linear combination Φ = Φd+λΦm. The regularization parameter
λ is the most important quantity in inversion. It determines the strength of the constraints,
thus the smoothness of the model. The value can be adjusted manually with experience.
However there exist methods for optimized selection as the L-curve criterion, but they are
not guaranteed to work properly. The crucial point is if the data are fit within the error
bound, thus not over-accurately. We observe the chi-squared misfit χ2 = Φd/N . The optimal
value is 1, however for practical purposes values below 10 are suggestive.

In every iteration the a new model mk+1 is calculated from the preceding model mk

mk+1 = mk + τ k∆mk .

The step length τk is determined by a line search algorithm such that Φd is minimized
over 0 ≤ τ ≤ 1. We apply an inexact line search which interpolates the function values
between f(mk) and f(mk+1) in order to save computing time. Therefore at most two forward
calculations are enforced in one iteration.

The application of the Gauss-Newton method to minimize Φ requires the solution of(
STDTDS + λCTC

)
·∆mk = STDTD

(
d− f(mk)

)
− λCTC(mk −m0) , (7)

which is done with CGLS-based methods.
The sensitivity matrix S contains the derivatives of the individual forward responses with

respect to the model parameters

Sij =
∂fi(m)

∂mj

.

We calculate the entries on the secondary mesh utilizing the reciprocity principle.

Robust Methods

Measurements with many data often show single erroneous values or outliers. In a least
squares (L2) minimization of the discrepancy they can obtain a strong effect onto the result
and prevent an appropriate data fit. An L1 optimization minimizing the sum of the absolute
values is much more robust against single outliers but technically complicating. The way out
is the concept of iteratively reweighed least squares (

”
robust inversion“). By a proportionate

weighting function the data weights are changed such that L1 behavior is simulated in L2

minimization. Larger errors are assigned to the data that cannot be fitted and their import-
ance decreases. Consequence is an improved data fit in χ2 sense. However it may happen
that real anomalies are underestimated.

The same proceeding can also be applied on model side. At the edges of high contrasts the
corresponding weighting function is lowered. Thus sharp contrasts are enhanced that often
comply with the nature of rocks or trees. Indeed the regularization may vanish locally and
absurd resistivity contrasts arise.

A restriction of resistivity values can be applied by logarithmic barriers: Instead of log mj

we choose the mj to be the logarithm of the difference log(ρj−ρl) or mj = log(ρu−ρj). Then
ρl and ρu represent a lower or upper resistivity barrier, respectively. Also a combination of
both is possible.
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A synthetic example

We demonstrate the technique using a synthetic model: Figure 1 shows the resistivity dis-
tribution of the model.

Abbildung 1: The synthetic model

In a homogeneous area of 100 Ωm two resistive (200 and 500 Ωm) and a conductive body
(50 Ωm) are placed. Whereas the upper half of the tree has circle geometry, the lower half of
the model shows definite undulations which are not uncommon. In Figure 2 we see on the left
hand side the synthetic dipole-dipole data that have been transformed with the analytical
configuration factor of circles.

Whereas at the bulges of the tree appear increased resistivities the concavities are as-
sociated to decreased data. By the simulation on the primary mesh the topography effect
(center) is calculated. It shows similar characteristics as the raw data. We utilize the values
to calculate the real configuration factors. The right image shows the so corrected data.
Clearly the artifacts caused by the tree shape vanish and resistive anomalies are visible that
do apparently correspond to the synthetic bodies.

Figure 3 shows the inversion results for three different values of the regularization para-
meter λ. The large value of λ = 30 (left) generates a relatively smooth model. It shows the
essential structures but lacks resistivity contrasts. In the middle image (λ = 3) the contrasts
are more distinct. One clearly sees the three bodies, even though the resistive ones cannot
be separated completely. However the choice of a too small regularization strength may lead
to artifacts that do not correspond to the resolution properties of the measurement. The
optimum value is for most data sets between 10 and 30. Excellent data sets may be better
explained with values below 10, whereas data with bad quality may require regularization
strengths of several hundreds.

Figure 4 shows the result of the inversion with
”
blocky model“ option. It can reproduce
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Abbildung 2: Raw data (left), topography effect (center) and corrected data (right) for the
synthetic model
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Abbildung 3: inversion results for value of λ =30 (left), 3 (center) and 0.3 (right)
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Abbildung 4: Inversion result with the
”
blocky model“ option
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the synthetic model best. In all cases artifacts arise directly at the boundary that can traced
back to insufficient discretization. However they are rarely of practical importance for the
interpretation and can thus be neglected.

Field examples

will follow

Induced polarization

will follow too
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