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In this tutorial we demonstrate how to do ERT inversion using the software pack-
age BERT. Some small but instructive examples, all real field cases, are discussed
to show how the different options in the configuration file can be used to yield
case-specific inversion results.
The examples start from 2d inversion of surface measurements with and without

topography. The same is later demonstrated in 3d, where mesh generations becomes
more an issue. We show how to include structural information and how buried
electrodes are handled.
Also, measurements on closed objects, such as trees, humans, soil columns and

model tanks are shown. Finally we show how to handle time-lapse resistivity mea-
surements. The user is invited to follow by processing the data in the examples
directory.
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1. Introduction

1.1. BERT 1 and 2, DCFEMLib, GIMLi - history and names

Direct current electrical measurements are used in a wide range of applications such as medical
imaging, geophysical surface or subsurface measurements or the investigation of trees and soil
probes. This inverse problem is known under the terms ERT (electrical resistivity tomography),
ERI (... imaging), EIT (... impedance tomography) or DC resistivity inversion. The aim of
our software is to present an extremely flexible solution that works on all geometries.
Main advantage is the possibility to work on arbitrary geometries. Therefore we decided to
consequently use unstructured1 finite element meshes for forward calculation as well as for the
parameter identification. By the use of triangles (2d) and tetrahedrons (3d) we can follow
any prior geometry, probe or structural information we have from the subsurface. Due to this
generality we decided to call it BERT - Boundless Electrical Resistivity Tomography. The
name BERT can be associated to

• the technical solution described by Günther et al. (2006), Rücker (2010) and other works,

• the C++/Python software project (on https://gitlab.com/resistivity-net/bert),

• the distribution (Windows installer, conda package), and

• the main command-line tool.

BERT version 1 (released 2009-2013) has been a part of the C++ library DCFEMLib - Direct
Current Finite Element Method Library that is still contained in the BERT source code. Parts
of the DCFEMLib-based tools for mesh generation are still in use but will be replaced by
Python tools soon. From version 2 on (starting with beta versions in 2010), BERT is based on
GIMLi - Generalized Inversion and Modelling Library, a multi-method C++/Python library
for various geophysical methods. Please have a look at https://www.pygimli.org for details
how to retrieve, build and use the code. pyGIMLi is licensed under Apache License 2.0 2 and
BERT is licensed under GNU public license (GPL)3. Our vision is giving back to the academic
community what we learned without companies letting exploit it, which is why we never cared
for a graphical user interface.
The basic theory and technology of BERT is described by Günther et al. (2006) and bases
on the finite element modelling techniques discussed by Rücker et al. (2006). First developed
for the usual point electrodes, the finite element modelling was later extended to arbitrary
electrode shapes using the complete electrode model (Rücker and Günther, 2011) and long

1Unstructured or irregular means that there is no order or rule of shape for the elements, regular discretizations
with quadrangles, hexahedra or prisms are just special variants.

2See https://www.apache.org/licenses/LICENSE-2.0 for Apache licensing conditions.
3See https://www.gnu.org/licenses/gpl.html for GPL licensing conditions
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electrodes using the shunt electrode model (Ronczka et al., 2015). Generally the inversion
is based on a smoothness-constrained Gauss-Newton inversion described by Günther et al.
(2006). It was later formulated as a flexible minimization and regularization scheme described
in detail by Rücker (2010).
The default inversion scheme is represented by a triple-grid scheme. Most inversion algorithm
use a dual-grid scheme, i.e. the forward calculation is calculated on a mesh that is finer than the
inversion one. We added another one in order to use a secondary field approach and thus have
a very fast forward calculation4 Figure 1 shows the three grids: On a coarse and resolution-
dependent grid the parameters are defined. On a globally refined and prolonged mesh the
forward calculation is done. And a very fine primary mesh is used to calculate the primary
potentials (for a homogeneous subsurface), but only once directly after the mesh creation.

Figure 1: The three meshs of inversion for a 2d example, from Günther et al. (2006)

The overall scheme is visualised in Figure 2. It starts with the generation of the three meshes.
Then the primary potentials are calculated and interpolated onto the secondary mesh. From
this geometric factors are derived yielding the apparent resistivity and the sensitivity matrix
is created for the homogeneous case. Finally the actual inversion is carried out: An inverse
sub-problem is used to update the resistivity model, a forward calculation is carried out and
checked against the data. The latter is done until the data are fitted well or the process
stagnates.
BERT is available under Linux and Windows5, either from pre-compiled binaries or self-
compiled code6. The paths to the binaries and the library must be known, e.g. by setting
$ export PATH=$PATH:/c/Software/BERT for Windows or under Linux
$ export PATH=$PATH:/path/to/BERT/bin
$ export LD LIBRARY PATH=$LD LIBRARY PATH:/path/to/BERT/lib BERT comes along with
the Python modules pyGIMLi and pyBERT that need to be found by setting the variable
PYTHONPATH to its place (without the pygimli or pybert at the end!). All variables can be
set permanently in a .bashrc file, either for all users in the directory where bert is, or for the
current user in the home directory.

1.2. Options and commands

The inversion itself is controlled by the program bert (a bash script), which reads the so called
configuration (cfg) file. In the cfg file all necessary information is stored in form of lines
consisting of KEY=value type, as in bash everything behind the #-sign is ignored and can be

4However,you can use a dual-mesh or single-mesh approach as well, or completely different meshes for forward
and inverse modelling.

5See appendix A.1 for using BERT in Windows.
6See www.resistivity.net for information about how to obtain the binaries/codes and to compile the code
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Figure 2: The BERT inversion scheme, from Günther et al. (2006): the geometrical information
is used to prepare the actual inversion (rectangle).

used for comments. Note that the keys must be uppercase7. There is only one mandatory
key: the DATAFILE key holding the name of the data file. Other important keys are
DIMENSION (2 or 3) and TOPOGRAPHY (0 or 1, meaning false or true). We suggest
to create a new directory for each problem or also for different strategies to solve it. The data
file must be in the unified resistivity.net format (see www.resistivity.net?unidata) or any
of the supported instrument files (see below, Python required!).
The current version can be show by calling
$ bert version

For list of possible options (with default values) see appendix D or call
$ bert opts

However only few of them are of frequent use8. At the beginning of each bert call, the global
and user options are searched for and displayed if present.
In order to create a new project there are special commands for the individual tasks, namely
bertNew2D, bertNew2DTopo, bertNew3D, bertNew3DTopo, for the cases 2d/3d with or with-
out topography. For example,
$ bertNew2D datafile.dat > bert.cfg

creates a new configuration file bert.cfg with the lines DATAFILE=datafile.dat, DIMEN-
SION=2 and TOPOGRAPHY=0, but also adds a lot of possible options for this case with
an explanation, most of them inactive/commented by a # character. All bertNew commands
try to convert any data files with endings

• txt (ABEM, Resecs or Syscal Pro Ascii Output),

• tx0 (4-point light),

7There is only one exception: cMin/cMax/cMap for color scale. We might drop case-sensitivity.
8For changing default options permanently, we suggest creating a file $HOME/.bertrc for user-specific options
or a file .bertrc in the directory where BERT is installed for computer-wide option (that are overridden by
user options or project options). Typical entries are, e.g., SENSMATMAXMEM=8000 (available memory
in MB), or favorite mesh options
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• bin (Syscal Pro/Junior binary file),

• stg (AGI SuperSting data)

• flw (Geotom custom array data)

• amp (ABEM LS system deprecated format),

• res2dinv (to be renamed to the extension res2dinv to be recognized automatically).

• udf (unified dataformat defined by DC2dInvRes)

to BERT input and adds a .dat ending to the original file name.
The input data conversion can also be done by hand by calling (no renaming necessary)
$ bert convert datafile

Additionally to the instrument data, one can also use the unified data format (UDF, once
defined by DC2dInvRes) with topography being specified at the end of the file. If the filename
contains topography at the end of the file (res2dinv or udf), the tape-measured electrodes
are unrolled along the topography the resulting data file holds the real positions in the elec-
trode section. Note that in case of topography we prefer (and save) resistance over apparent
resistivity as it is not disambiguous concerning how the geometric factor was calculated.
The user can now (or later) change the options and run single steps or the whole inversion by
bert cfgfile commands

where cfgfile is the configuration file and commands can consist of the following:

version just plot BERT version and default options

all makes all, that is probably the first step in most (at least small) cases

meshs just create meshes to check them first (suggested for bigger problems)

nomeshs do everything else but the meshes (after a successful mesh generation)

domain create only the mesh input PLC

pot calculates primary potentials and interpolates them to the secondary mesh (in BERT 1,
this was divided into the two jobs primPot and interpolate)

filter filter input data using data limits, add geometric factor and estimate error

calc only filtering and inversion (no change of mesh), e.g. after changing inversion options

save saves all important results (model&response for each iteration, log file, cfg file, meshes)
in a directory called result<date> <time>

clean cleans the directory from temporary results

mrproper deletes all stuff except input and result directories (releases disk memory fully)

plotting functions (2D only, with Python):

showmesh show parameter mesh (2D)

showpoly show poly file as input (2D and 3D)
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show show inversion result or other model vector (2D and 3D)

mkpdf generate a pdf of the resulting resistivity or other model vector (2D)

showdata plots apparent resistivity pseudosection (2D)

showerror plot error model pseudosection (2D)

showfit show data, model response and misfit as pseudosections (2D)

The show commands can be used in the project directory, also while inversion is still running,
or in a result directory with saved results.

2. Basic concepts using a simple 2D example

2.1. First steps

The example in examples/inversion/2dflat/gallery was friendly provided by the Univer-
sity of Mining and Technology, Freiberg (F. Donner) and extensively discussed by Günther
(2004). It is a very small profile over a known mining gallery that is used for draining water
out of the mines. It represents a perfect two-dimensional anomaly since it strikes perpendicular
to the profile and is a 2x2m cavity.
On a profile using 21 electrodes with 2m spacing, dipole-dipole measurements have been ap-
plied, the data quality was very good. The input in the data file gallery.dat is already the
apparent resistivity, an error model is already in the data.
We create a configuration file redirecting the output of an initialization script
$ bertNew2D gallery.dat > bert.cfg

DATAFILE=gallery.dat

DIMENSION=2

PARADX=0.25 # size (in electrode spacings) of cells at the surface

PARA2DQUALITY=34.0 # defines how fast the mesh is growing (33-fast,35-slow)

The resulting file bert.cfg holds the data file, the dimension, some default options and some
possible options that are deactivated by the hash. Before running an inversion we want to
have a look at the data by calling9

$ bert bert.cfg showdata

Figure 3 shows the data, i.e. the apparent resistivity pseudosection. DD denotes dipole-dipole
array and the number the spacing. You can also look at the error by replacing showdata with
showerror.
The simplest inversion run is started by
$ bert bert.cfg all

and comprises mesh generation and actual inversion. The output, which is also stored in the
file bert.log, ends with

4: Model: min = 69.271; max = 756.813

4: Response: min = 85.2701; max = 364.752

9Plotting any show command will only work if Python is installed (and found with the PATH environment
variable or defined by PYTHON) and the modules pygimli and pybert are found via PYTHONPATH.
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Figure 3: Apparent resistivity pseudosection with the showdata command.

4: rms/rrms(data, Response) = 3.8314/1.71759%

4: chi^2(data, Response, error, log) = 1.7069

4: Phi = 198.001+19.2525*20=583.052

In each iteration (number at the beginning) the minimum and maximum values are specified
for the model and its forward response. Additionally, the inversion specifies several measures
of data fit: an absolute root-mean square (rms) in Ohmm, a relative rms (rrms), the error-
weighted chi-square fit χ2 = Φd/N and the objective function Φ consisting of data misfit
Φd =

∑
((di − fi(m))/ϵi)

2 plus the regularization parameter λ (here 20) times the model
roughness10. Obviously the data are fit with a good rrms of about 1.7%, which is not completely
within the error model (χ2 = 1 means a perfect fit).
$ bert bert.cfg show

shows the inversion result displayed in Figure 4 using default options. It clearly images the
cavity at about 20m and another resistive anomaly whose origin is not completely clear from
2d measurements. See section 4.1 for inversion of a 3d data set.
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Figure 4: Result of the gallery example using default options.

It shows a rising well-conducting loamy overburden over a medium conductor, in which two
distinct resistive bodies are embedded. The central one is the well-known mining gallery,
the origin of the other is not completely clear. One can click into the model getting some
information on the model cell.

10See Günther et al. (2006) for details and definitions.
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The colour scale is chosen automatically by using 3% interpercentile values (this can be changed
by setting the variable INTERPERC) unless not explicitly specified in the cfg file by the
keywords cMin and cMax. The default color map depends on your matplotlib version, from
v.2.0 on the perceptual11 viridis color map replaced the old jet scale. As an alternative,
you can use the rainbow-like Spectral r that does not show the dominating yellow and cyan
colors. You can use the key cMap to choose any of the matplotlib color scales12. The keyword
USECOVERAGE (0 or 1-default) defines whether the coverage is used for alpha-shading
the model). The key SHOWELECTRODES defines whether electrodes are plotted as black
dots.
The model plot can be saved using
$ bert bert.cfg mkpdf

A visual inspection of the data fit can be obtained by calling
$ bert bert.cfg showfit
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Figure 5: Measured apparent resistivity (top), model response (center) and percentage data
misfit (bottom).

We see hardly any visual difference between the measured and modelled data. However, the
misfit plot (that can also be obtained as a single plot by bert bert.cfg showmisfit) shows
some systematic layering hinting that there might be still some information left. Ideally, the
misfit plot is an uncorrelated random distribution. To save the result for further use, we use
the command
$ bert bert.cfg save

It saves all input files, meshes, log files and results (vectors, vtk and pdf files) to a result folder.
We can later go to this folder and do some visualization (or even start a new inversion). Save
also cleans the working directory from temporary files. If you want to clean manually, call

11See discussions on https://mycarta.wordpress.com/2012/05/29/the-rainbow-is-dead-long-live-the-rainbow-series-outline/
12For a list, see https://matplotlib.org/users/colormaps.html
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$ bert bert.cfg clean (only the working directory) or
$ bert bert.cfg veryclean (deletes also mesh and potential directories).
$ bert bert.cfg pack even compresses all result folders.

2.2. Regularisation and data fit

We now might to change the characteristics of the model. The most important key for that
is the regularization parameter LAMBDA. It controls the strengths of the smoothness con-
straints and thus defines how smooth the model will be. Therefore we test different values
by commenting out the line with the parameter LAMBDA and setting it once to 200 and
once to 2 instead of the default value of 20. After changing it we can combine calculation and
plotting bert bert.cfg calc show
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Figure 6: Result for a regularization parameter LAMBDA of 200 (left) and 2 (right).

Figure 6 shows the result for the two regularization strengst. The one for λ = 200 is clearly
over-smoothed and cannot fit the data appropriately (χ2 = 7.6, rrms=3.1%). The value of
λ = 2 can fit the data (it stops at χ2 = 0.8, rrms=1.2%) and could be a model. Even lower
values will lead to oscillations in the model. By default, the regularization parameter remains
constant, however in some cases it can be beneficial to start with a higher value and to decrease
it in every iteration (say by 20%) using LAMBDADECREASE=0.8. The regularization
strength can also be optimized by two ways: One is to adjust it such that the data are perfectly
fit withing error (χ2 = 1) by using CHI1OPT=1. This is particularly interesting for synthetic
data. Another option is to find the maximum curvature of the L-curve for a certain range of
lambda values as described by Günther et al. (2006) using LAMBDAOPT=1.
Note that LAMBDA controls the smoothness compared to the data misfit term, in which the
data errors serve as weighting. Higher errors correspond to lower regularization and vice versa.
Note that stacking errors from instruments are not appropriate measures in the meaning of how
well we can fit the data. A way to estimate errors is the analysis of reciprocal data as explained
by Udphuay et al. (2011) and references therein. In the absence of errors in the data file an
error estimation is made using a fixed percentage (INPUTERRLEVEL) and a voltage error
(INPUTERRVOLTAGE). If the current is not in the file, a value of 100mA is assumed.
For different current strengths the voltage error has to be adapted. If there are errors in the
file, they can be discarded by a new error estimation by using OVERRIDEERROR=1.
Note that an L2 norm (squared) minimization assumes a Gaussian distribution of the (error-
weighted) misfit. In case of significant outliers in the data one can use ROBUSTDATA=1,
an L1 norm scheme based on iteratively reweighted least squares (IRLS) after Claerbout and
Muir (1973). However, one can easily loose resolution, which is why it is not recommended by
default, but should be used after observing systematic outliers in the data.
In many cases the default regularization strength will lead to a good start, providing the error
estimation meets the data quality. We recommend to have a look at distribution of the misfit
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(Fig. 5c). In almost all surface measurements there is a need for anisotropic regularization, i.e.
for a lower penalty of vertical contrasts due to a predominant layering (and also supported by
a lower resolution of the method). The variable ZWEIGHT defines the relative weight for a
purely vertical boundary in the model. For arbitrary boundaries (as they occur for triangular
and tetrahedral discretizations) they are computed as described by Coscia et al. (2011).
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Figure 7: Result of the gallery example using ZWEIGHT=0.4.

Figure 7 shows the result for a vertical weight of 0.4, which probably improves the interpre-
tation a bit. As a result, the layering in the misfit function disappeared. Note that reducing
ZWEIGHT from the default value of 1 decreases the overall smoothness and can lead to over-
fitting by small-scale anomalies. In these cases the LAMBDA value should be increased. In
order to overcome the smooth transitions in the model, one can use BLOCKYMODEL=1,
i.e. the L1 norm minimization scheme. Just like the ROBUSTDATA option it used IRLS
for weighting the individual gradients such that stronger contrasts are occurring.
So far we used first-order smoothness constraints, i.e. the constraint type CONSTRAINT-
TYPE of 1 (default). One can also use second-order smoothness (2), i.e. the curvature of the
model is minimized. Zeroth-order smoothness (0) means that only the norm of the model dif-
ference to the reference model is minimized. This can easily lead to strange oscillations in the
model and is therefore only recommended if a very good starting model is known. Other pos-
sibilities comprise a mix of minimum-length constraints with first or second order smoothness
using the values 10 and 20.
By default, a homogeneous starting model is generated with the median apparent resistivity.
This can be overridden by the key STARTMODEL, which can be either a resistivity value
or the name of a file containing the whole vector. As the length needs to match the unknown
model cells, this varies with the mesh option, which is why non-homogeneous models are more
easily controlled by using regions (see chapter 5.2). By default, the starting model is also the
reference model, i.e. the model (including logarithmic transforms) difference is constrained.
To prevent this, use the switch NOREFERENCE=1.

2.3. Mesh quality and refinement

Inversion results are of course to a certain degree mesh-depending. We go back to the mesh
generation and have a look at the input of the mesh generation, the piecewise-linear complex
(PLC), stored in mesh/mesh.poly by calling
$ bert bert.cfg showpoly and zooming in a little bit

We observe two bodies, an inner in red (the parameter domain with the marker 2), and
a much bigger outer with the marker 1, which is needed for the forward calculation. The
depth of the parameter domain is by default automatically determined based on 1d sensitivity
studies (calling the command paradepth gallery.cfg, but can be adjusted using the key
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Figure 8: Piecewise linear complex (mesh input) for the gallery.

PARADEPTH. Sometimes it is advisable to increase the default value a bit. The value
of PARABOUNDARY defines how far (in % of the electrode extension, default=5) the
boundary is outside of the electrodes (red dots). Between the electrodes there are auxil-
iary points (in black) that define the mesh refinement at the surface, which is controlled by
the key PARADX. A value of 0.5 means one additional point (as in Fig. 8), 0.3 means
two points. Lower values means that two points are set to the left and right of each elec-
trode (if EQUIDISTBOUNDARY=0). If EQUIDISTBOUNDARY=1 is set (default),
1/PARADX is rounded to a natural number and equidistant points are set. The standard
value for PARADX is 0.25 for flat topography and 0.33 with topography.
The coarse-ness towards the boundary is controlled by the mesh quality PARA2DQUALITY,
which denotes a minimum angle. The higher the quality is, the more regular the triangles be-
come, and the numerical accuracy increases but with an increasing number of cells and thus
run-time. In triangle13 (Shewchuk, 1996) version 1.6, our favoured 2d mesh generator, the
range goes from 25-30 (bad quality) to 34-35 (good quality). We use the default tarting value
of 34, but opt to increase it towards 35. Another way of avoiding a too coarse mesh is the
maximum cell size by setting PARAMAXCELLSIZE (in m2). Alternatively the param-
eter PARAEDGELENGTH is used to compute the area of a regular triangle to be used
for PARAMAXCELLSIZE. We recommend editing the cfg file and calling bert bert.cfg

showmesh until the user is satisfied.
In Figure 9 the resulting parameter meshes for different settings are displayed. Clearly, too
low mesh qualities can lead to large and coarse triangles at the lower boundary, we recommend
values between 34 and 34.6. Restricting the maximum cell size can help but also create
artificially low triangle sizes somewhere in the model. For the outer model part there is the
switch BOUNDARY, measured in multiples of the electrode extension, i.e. a value of 5
means that in our case there is 5x40m space in -x, +x and -z direction.

2.4. Regular meshes

In contrast to irregular meshes, regular meshes need less control, but can lead to much higher
number of cells and nodes compared to triangular meshes for the same refinement at the
electrodes. Particularly the outer boundary becomes inefficient with rectangles. Therefore the
regular parameter meshes are surrounded by triangles. Regular (quadrangle) meshes can be
easily used by using GRID=1 (Python+pygimli needed). Additionally to PARADX and
PARADEPTH, the key PARADZ can be used to define the first layer thickness (otherwise

13see https://www.cs.cmu.edu/~quake/triangle.research.html
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Figure 9: Meshes with different parameters: dx=0.25 & q=34 (top left, default), dx=0.25 &
q=33 (top right), dx=0.25 & q=34.5 (center left), dx=0.25 & q=34, maxA=1 (center
right), dx=0.5 & q=34 (bottom left), dx=0.5 & q=34.5, maxA=1 (bottom right)

equal to PARADX). The key LAYERS defines the number of layers (by default 11) created
in such a way that the layer thickness increases linearly. Figure 10 shows the result of the
default grid options, which is very comparable to Figs. 6b or 7.
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Figure 10: Inversion result for a regular parameter grid.

2.5. Induced polarization

There are several types of induced polarization (IP) data as addition to resistivity amplitude,
either measured in the frequency domain (FD):

phase shifts using single or multiple frequencies

frequency effects calculated from resistivity measurements at two frequencies

or in the time domain (TD):

total chargeability representing the integral of the decay curve (in ms)

integral chargeability of a time window normalized by gate length & voltage (in mV/V)
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The BERT IP inversion is oriented at single-frequency FD measurements, but can be applied to
any other type of data as long as the effects are small due to linearity. IP data are represented
as a column named ip in the data file, which is inverted after the (DC) resistivity inversion.
The actual IP inversion uses, as described by Martin and Günther (2013), the Cauchy-Schwarz
relations between real and imaginary parts to formulate the inversion of the imaginary resistiv-
ity as a linear problem. Finally, the imaginary resistivity is transformed back into a phase (in
mrad). As for IP inversion a different regularization strength might be used, you can use the
key LAMBDAIP, otherwise it is taking the LAMBDA value from the resistivity inversion.
However, due to the linearity of small phases any other type of data (apparent chargeability
in mV/V or msec or frequency effect in %) can be input and thus the output will have the
same unit. As an example for this quite simple approach we provide the data of the healthy
oak presented by Martin and Günther (2013) in the section 3.3.
In many cases, spectral IP data are gained by measuring multiple frequencies or analysing
different parts of the decay curve. As this goes beyond the data format and analysis, spectral
analysis is not part of the command line bert. Instead, we provide a Python class for SIP
data handling, inversion and post-processing (Günter et al., 2016). It directly reads field SIP
data and can do a spectrally constrained inversion of all frequencies followed by a Cole-Cole
analysis as described by Günther and Martin (2016).

3. Other 2D geometries

3.1. 2D ERT with topography

In 2d inversion, topography is easily integrated by setting the heights of the electrodes. All
the rest should be done automatically, if necessary, additional electrodes must be inserted.
However, rarely all electrodes will be measured topographically. Often it is sufficient to have
a few points. Note that in the current stage BERT requires the topographical information in
the first section, not at the end of the file. For this case we recommend the use of DC2dInvRes
(Günther, 2007) that will roll the positions along the surface. For this task, use Data:Save

Ohm file and specify whether the x values are along measure tape or real x.

The slagdump profile

This field case is the very first case described by Günther et al. (2006), the base BERT article,
as a 3D case, friendly provided by the M. Furche, Federal Institute of Geology and Natural
Resources (BGR), Hannover. The data in examples/inversion/2dtopo/slagdump is one of
the profiles crossing the slag heap (Fig. 10). A Wenner array with a = 2m spacing was applied
yielding 222 data points. The topography was measured at 8 points by levelling and appended
to the original file before converting it with DC2dInvRes. We initialize the inversion with
standard options using the command:
$ bertNew2DTopo slagdump.ohm > bert.cfg

In case of non-trivial geometry we have another numeric task, i.e. to compute the primary
potentials (that are otherwise computed analytically), which is associated by several key words
starting with PRIM. Similar to the parameter mesh, the PRIMDX value specifies the (abso-
lute, not relative!) refinement at the electrodes and PRIM2DQUALITY defines the mesh
growth. Additionally, the PRIMP2MESH (default 1) determines the primary potentials
being computed by quadratic shape functions (P2 refinement). As stated by Rücker et al.
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(2006) the necessary refinement for a P2 mesh is about a/10 and a/100 for a P1 mesh. Usually
the points at the surface are linearly interpolated, SPLINEBOUNDARY=1 forces a spline
interpolation, which is useful for ”round” geometries or smooth topography.
After computing the primary potentials including interpolation onto the secondary forward
mesh (done by bert bert.cfg pot), there are two files primaryPot/pot.ohm and primaryPot/pot.collect
describing the potential for a unit conductivity for the chosen array and all electrode combina-
tions, respectively. These are used to compute the geometric factor and the apparent resistivity
(bert bert.cfg filter). By calling bert bert.cfg topoeff one can see the topographic
effect (Rücker et al., 2006), i.e. the ratio of the geometric factors with and without topog-
raphy t = Gflat · utopo(σ = 1S/m). bert bert.cfg showtopocorr displays additionally the
apparent resistivity based on the flat and topographic geometric factor (s. Fig. 11). Several
anomalies can be explained solely by topographical undulations. The resistivity distribution
shows a conductive interior and a resistive hard pan as discussed by Günther et al. (2006).
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Figure 11: Topographic effect and inversion result of the slagdump site.

3.2. 2D cross-hole data

Of course cross-hole measurements can also be inverted using BERT. The height of each elec-
trode must be set to the elevation minus depth. However, since we cannot distinguish whether
it is topography or a buried electrode we must create the geometry by hand.
The example in examples/inversion/2dxh was produced by O. Kuras of the British Geolog-
ical Survey (BGS) in the ALERT project (Kuras et al. (2009)) for time-lapse inversion (see
section 6.3). It represents about 1300 data obtained by cross-hole measurement between 5 very
shallow (0-1.6m) boreholes. In order to create an inversion mesh we would create a small box
with marker 2 (inversion) inside of a big box that is used for forward calculation (marker 1)
by 8 points and 8 edges.
This is more rigorously implemented by the PLC script polyFlatWorld which automatically
calculates the size of the model and the boundary around the electrodes from the parameters
BOUNDARY, PARABOUNDARY, PARADX and PARADEPTH. It is controlled by
PARAGEOMETRY=”polyFlatWorld 2dxh.ohm”14. As before, we can use PARADX

14Previous versions included the word source (run it in the current shell) which could lead to an error. As we
detect it to be a command, we source automatically to be able to access the parameters given in the cfg file.
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to refine the model at the electrodes by a node between each of the 0.1m separated elec-
trodes using PARADX=0.05. Note that, different from 2d surface measurements, it is
treated absolutely by polyFlatWorld. Due to the layering, we use ZWEIGHT=0.1, a larger
LAMBDA=100 and ROBUSTDATA=1. Figure 12 shows the obtained resistivity distri-
bution at the very beginning of a tracer experiment.
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Figure 12: Inversion result of the crosshole data set.

In BERT 2, electrodes do not have to be points anymore. However, for surface measurements it
makes almost always sense to use their positions as node to construct the mesh. This is different
in cross-hole geometries. Similar to the script polyFlatWorld there is a script polyFreeWorld
that replaced the former in the cfg file.
Since there a too few constraints to triangle, the resulting mesh is very coarse over the whole
area. We could place some points to ensure locally small triangles and use a good mesh quality
for slowly increasing edge lengths. Alternatively we can (globally) provide a maximum triangle
area, e.g. by using the option PARAEDGELENGTH, where it the area is computed based
on a regular triangle. By setting the actual value to 0.05 we obtain a fine enough mesh
independent on electrode positions.
The third way is to create a regular mesh with either GRID=1 or a user-defined Python script
(examples/inversion/2dhx/reg/mymesh.py). Figure 13 shows the two alternative results. In
general the resistivity distribution is very similar, i.e. the good conductor at depth and the
resistor on the top left. However there are differences in the small-scaled aquifer anomalies.
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Figure 13: Inversion results on alternative mesh types: free electrodes (left) and rectangular
mesh (right).
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3.3. Closed 2d geometry - tree tomography

ERT on hollow lime tree

For 2d bodies the electrodes are usually on the whole boundary and the PLC can easily be
formed by a close polygon. For tree geometry a dedicated GUI named TreeBERT (before
DC2dTree) was created making it easy to process the data visually. EIT on trees has been
successfully established to investigate decay of trees (Martin and Günther, 2013). The example
in examples/circle/tree was measured and provided by Niels Hoffmann, formerly HAWK
Göttingen. It represents a lime tree, measured by 24 steel electrodes that are plugged into the
bark. Dipole-dipole measurements have been applied using a Geotom instrument.
The configuration file reads as follows

DATAFILE=hollow_limetree.ohm

DIMENSION=2

TOPOGRAPHY=1 # activates the primary mesh

CYLINDER=1 # defines a closed geometry

SURFACESMOOTH=1 # makes a nicer surface

EQUIDISTBOUNDARY=1 # equidistant refinement

PARADX=0.2 # 5 segments between the electrodes

PARA2DQUALITY=34.8 # very good quality, almost the upper limit

SPLINEBOUNDARY=1 # round geometry

PRIMDX_R=0.001 # refinement of primary mesh in radial direction

LAMBDA=10 # regularisation strength

BLOCKYMODEL=1 # enhance contrasts by robust (L1) methods

For this case an equidistant refinement, the use of splines and a high quality ensures a nice
mesh with a round boundary. The primary refinement is done in radial direction. Additionally
we used the robust modelling in order to obtain a clearer contrast of the high resistivity.
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Figure 14: Tree cut (left), inversion result (center) and overlay.

After the measurements the tree was cut and revealed a cavity inside caused by decay. Figure 14
shows a photograph, the inversion result and an overlay of both. Clearly the cavity is marked
by high resistivity that is in almost perfect accordance with the photo.
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ERT and IP on healthy oak

The data provided in examples/inversion/circle/oak/ are described by Martin and Günther
(2013), who also give details on both the measurement and the inversion. Measurements were
taken at a standing healthy oak (section HI in the paper) in both summer and winter. We
take the measurements in summer (hp5-s.dat) and invert it with the given cfg file hp5-s.cfg.
Looking into the output that is also stored in bert.log we see the following:

Linesearch tau = 0.12

3: Model: min = 211.068; max = 435.779

3: Response: min = 252.394; max = 359.383

3: rms/rrms(data, Response) = 82.4875/25.4984%

3: chi^2(data, Response, error, log) = 68.29

3: Phi = 19052.9+4.17273*20=19136.4

Reached data fit criteria (delta phi < 2%). Stop.

Processing ip data min=9.84261 max=37.4019

... # some more stuff here depending on verbosity

After inverting the DC data, dcinv looks for the IP data and would stop if there were none
(min/max=0). Then, the IP data are inverted, by default the output is silent to that we do
not see the individual inversions (as it would hinder looking at the DC data fit), but only the
last iteration.

15: Model: min = 0.00531699; max = 33.0494

15: Response: min = 1.49463; max = 17.6232

15: rms/rrms(data, Response) = 0.893923/12.1318%

15: chi^2(data, Response, error, log) = 7.36795

15: Phi = 2055.66+290.928*20=7874.23

Resulting phase: min=0.0178055 max=111.453 mrad.

In this case the model (imaginary resistivity) lies between some milli-Ohms and several Ohms,
corresponding to phase values of more than 100mrad. The data fit is 12%, however this
measure might not be meaningful when there are ip data close to zero present. The chi-square
error is based on an assumed phase error of 1mrad. The resulting phase image can be shown
by
$ bert hp5-s.cfg show phase.vector or exported to pdf using
$ bert hp5-s.cfg mkpdf phase.vector.
The default regularization strength (LAMBDA value is taken for both) was in this case
good for both DC and IP inversion. In general, different values might be appropriate. If the
parameter LAMBDAIP is given then this value will be used for IP inversion only. Note that
a rerun of the calculation (calc) needs to be done. More flexible possibilities for IP inversion
are available through the Python classes Resistivity (for single DC/IP inversion) and SIPdata
(for spectral IP inversion).

4. 3D geometries

3D surface measurements

3D surface measurements can be carried out in several variants:
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Figure 15: Resistivity (left) and phase (right) image for the healthy oak tree (in summer).

1. Layout of an electrode grid. However, due to the limited electrode number grids are
restricted to small areas.

2. Parallel (and perpendicular) profiles along the coordinate axes.

3. Profiles in arbitrary directions due to accessibility limits.

4. Non-profile layout, e.g. large-scale dipole-dipole experiments.

In any case, the electrode positions and measurements must be defined according to the unified
data format. The data for the first two types can be easily organized by hand. For number 3
(and 2) we suggest to prepare 2d files and to write a pro-file containing of lines with the 2d file
name and x-y pairs of points where the line is going. This file can be read into DC3dInvRes
Günther (2008) and used to write the 3d file. In case of topography it is best to do the tape
correction on the 2d files before using DC2dInvRes and Export Ohm.
The most flexible element in 3d is the tetrahedron. The tetrahedralization is done by a mesh
generator, our primary choice is Tetgen (Si, 2008), a free and versatile quality mesh generator
(Si, 2015) that can be retrieved from https://tetgen.org, however you can also use the mesh
generator GMesh (Geuzaine and Remacle, 2009) as described in the Appendix. The quality
measure is different from 2d and describes a radius-to-edge ratio, note that small values point
to higher quality. Appropriate values for (primary field) forward calculation are 1.12 to 1.2,
for the inverse (and thus secondary) mesh values of 1.2-1.5 are appropriate, the keys are
PRIM3DQUALITY and PARA3DQUALITY.

4.1. Flat-earth surface measurements

In examples/inversion/3dflat/gallery is a data set in the field where the 2dflat example
(section 2.1) was measured. More information can be found in Günther (2004). It comprises
a grid of 9x14 electrodes. Dipole-dipole measurements have been measured on all x and y
profiles. In the data file is an error of constant 0.0 that will be overrided automatically. An
inversion project file with default parameters is created by:
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$ bertNew3D gallery.dat > bert.cfg

The inversion is then fully run (with command all) converging to a chi-squared misfit of about
2 (rrms=4-5%). In order to fit the data better, the regularization parameter is decreased using
LAMBDA=5, which leads to an relative rms error of about 3% (χ2 = 1). Another way is to
use an anisotropic regularization (ZWEIGHT below 1) also leading to χ2 ≈ 1.
The inversion result is already saved a vtk file names dcinv.result.vtk and can be viewed
by 3D visualizaton software such as ParaView15.

Figure 16: Inversion result of the 3d gallery data set using a smoothed iso-surface of 650Ωm
and a Plane Clip, the red spheres are the used electrodes.

Figure 16 shows a Paraview visualisation that has been created by the following steps: i) Cell
Data To Point Data, ii) Clip by Scalar 650 (Ωm), iii) Extract Surface, iv) Smooth Surface, v)
Another Clip based on Cell2Point with Plane, vi) representation of the input as Outline and
Cube Axes. The color bar is logarithmic with a manual range of 100-1000Ωm. The electrodes
have been included as point vtk file and displayed by Glyph as Spheres of radius 0.05. After
some exercise the reader will be able to create nice images, plots and calculate results such as
extensions or volumes of geological bodies.

4.2. 3D Topography

The definition of a 3d topography is much more complicated than in 2d, where every shape
can be described by a simple polygon. The input PLC consists of faces instead of edges, the
resulting poly file has a similar but different format16. Generally the proceeding is the following:
i) create a flat surface mesh, ii) interpolate heights from topographic information, iii) make
a small (inversion mesh) and a large (forward mesh) box around it, iv) make refinement, if
necessary, and v) create the mesh using tetgen. The whole procedure is introduced by Günther
et al. (2006) and explained in more detail by Udphuay et al. (2011) for the example of a steep
cliff.
For specifying topographic information, there are two different ways:

15see https://www.paraview.org
16See https://tetgen.org.
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• the electrodes in the data file have an elevation and all other points are interpolated

• there is a digital elevation model (DEM) or at least a list of measured topo points (in a
3-column file containing x,y and z)

Whereas the first case is sufficient for smooth topography and/or dense electrode coverage,
the latter is more general. The topographic points can be a (mostly regular) digital elevation
model (DEM) or a list of irregularly measured points. In any case they are Delaunay triangu-
lated to provide an elevation for every point in the surface of the mesh, i.e. the electrodes but
also the whole forward mesh so that points outside the actual electrode spread are especially
helpful. Both ways can be combined, however we recommend setting the height of the elec-
trodes in the data file to zero so that these are interpolated from the DEM. Electrodes with
measured elevations that are ensured to be consistent with the DEM can be appended to the
topo file. The ASCII file containing the topographical points as x-y-z columns is specified by
TOPOPOINTS=filename.
In examples/inversion/examples/acucar there is a project measured by the Federal Insti-
tute of Geology and Natural Resources (BGR) Hannover (M. Furche). The site is an old slag
dump that comprises a topography reminding on the sugar hat in Rio. Two resistivity profiles
have been measured crossing the top of the isolated hill. Another profile was realised around
the hill in a more or less constant elevation. Although this is not a dense sampling as an
electrode grid it should be sufficient to obtain a rough image.
Additionally to the electrodes, some topographical points have been measured and put into
the file points.xyz. So we create a new project using
$ bertNew3DTopo acucar.ohm > bert.cfg

and add the line TOPOPOINTS=points.xyz to the model. If we now call
$ bert bert.cfg meshs

we see the mesh does not show the hill, since the topography overrides the electrode elevation.
Therefore we have to add the electrode definition (lines 3-230) to the topography file and see
then the hill (Figure 17 left). However due to the point density the electrode line appears as
a sharp edge that is not really the truth but sufficient in this case.
In other cases we might have a digital elevation model. In order to show this on the same
example, we created one by cubic interpolation of the available points on a regular grid of
2m spacing. In order to avoid interpolation errors between the electrodes (Udphuay et al.,
2011, Fig. 10) we created a polygon file poly.xyz for the three profiles17 and introduce it by
TOPOPOLY=poly.xyz. Figure 17 shows the surface mesh of both variants. The sharp
edges are now disappeared.
Finally the inversion result is visualised in Figure 18. It shows a conductive interior of the slag
dump and different sediments at the surface, e.g. a resistive top. Of course the data coverage
is low between the profiles and at the model boundaries. Therefore the model becomes more
or less interpolated by the smoothness constraints.
For creating appropriate 3D meshes, one might need to play with the mesh options before
going into inversion. Instead of the usual refinement parameter PARADX to refine the mesh
at the surface, you can consider working with the parameters of the triangular surface: SUR-
FACEQUALITY (the quality of triangle mesh, see 2D inversion), SURFACEMAXTRI-
SIZE (the maximum element size) and SURFACESMOOTH. Frequently one observes ugly

17Several polygons are separated by a blank line.
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Figure 17: Surface mesh for the point-wise topographic information (left) and the digital ele-
vation model (right), the electrodes are shown as red points.

Figure 18: Inversion result of the 3dtopo case.

shaped tetrahedra at the boundary of the parametric domain and a correspondingly coarse dis-
cretization. This can be overcome by specifying LOOPTETGEN=1, i.e. the mesh generator
is called in a loop to improve mesh quality step-by-step.

4.3. 3D-Crosshole measurements

Crosshole measurements can of course be applied three-dimensionally. The example in examples/inversion/3dxh
was presented by J. Doetsch from ETH Zurich. The data file 3dhx.ohm comprises 753 data
between 4 boreholes in the saturated zone (d=4-10m) and is part of a monitoring experiment.
We create a cfg file using

DATAFILE=3dxh.ohm

DIMENSION=3

PARABOUNDARY=15 # to get a bit more space around the electrodes

PARAGEOMETRY="polyFlatWorld $DATAFILE"

By using ZWEIGHT=0.2 we can enhance the predominantly layered structures. The in-
version converges then with defaults down to about χ2 = 1. Figure 19 shows the final result.
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Figure 19: Inversion result for the 3D crosshole case.

4.3.1. Topography and buried electrodes

If both heights and depths below surface are given, we cannot use createSurface/createParaMesh
and polyFlatWorld. In this case we suggest to create a data file with the surface electrodes
(either with topo or with zeros and a topo file) and a list of subsurface electrodes including
real. The normal PLC generation is done with the first and the latter are then added us-
ing polyAddVIP. Importantly the order of electrodes must be set such that first the surface
electrodes and then the buries electrodes appear. The resulting script is introduced using
PARAGEOMETRY=myscript.sh which can look as follows:

cp bert.cfg surface.cfg # makes a copy with all options

echo DATAFILE=datafile-without-electrodes.dat >> surface.cfg

bert surface.cfg domain # creates mesh/mesh.poly

polyAddVIP -m -99 -f borehole-electrodes.xyz mesh/mesh.poly

Finally all electrodes are in the PLC in the right order and all should be well.

4.4. Closed 3D geometries

Closed geometries are actually easier than open ones since we do not need a mesh prolongation
and two different regions. However since the whole boundary is of Neumann type, we must
ensure two additional conditions that are not necessary in the open case:

• The current cannot vanish in infinity, therefore we must use dipole sources, e.g. by a
reference current node.

• Since only derivatives are present in the boundary value problem, we must make the
forward solution unique, e.g. by adding a reference potential node, whose potential is
forced to zero.
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A 3d model tank

There are numerous examples of ERT measurements in model tanks that can be either cylindric
(Garre et al., 2010) or cubic (Bechtold et al., 2012; Persson et al., 2015). In the Federal
Institute of Geology and Natural Resources (BGR), Hannover, a cylindrical model tank was
created (Falcon-Suarez et al., 2016) in order to make infiltration experiments with material
from sawdust or from slag dumps. The column has diameter of 30cm and a height of 80cm.
In each of 5 rings with 5 cm vertical distance 24 steel electrodes of 2cm length were installed.
Dipole-dipole measurements have been applied to all rings yielding a number of 320 data. The
example is located in examples/inversion/3dtank.
Since the parameterization cannot be detected automatically from the file, we have to create
the mesh input, i.e. the PLC in mesh/mesh.poly by hand using a script. There is a poly tool
polyCreateCube creating a unit cube. With the option -Z is creates a unit cylinder instead,
which has to be scaled appropriately. Then we put in the electrodes as points18 with the
marker -99. We insert two additional nodes with markers -999 and -1000 that are used for
current reference and potential reference. So the script reads:

MESH=mesh/mesh # PLC name

polyCreateCube -v -Z -s 48 -m 2 $MESH # create unit cylinder with 48 segments

polyTranslate -z -0.5 $MESH # moves it such that top is zero

polyScale -x 0.3 -y 0.3 -z 0.8 $MESH # scale to radius 0.15 & height 0.8

cat soil_column.dat | head -n 82 |tail -n 80 > elec.xyz # extract electrodes

polyAddVIP -m -99 -f elec.xyz $MESH # add electrodes to mesh

polyAddVIP -m -999 -x 0 -y 0 -z 0 $MESH # current reference node

polyAddVIP -m -1000 -x 0 -y 0 -z -0.8 $MESH # potential reference node

polyConvert -V -o $MESH-poly $MESH # convert to vtk to load it to paraview

We create an empty cfg file (or use bertNew3DTopo) with the lines

DATAFILE=soil_column.dat

DIMENSION=3

TOPOGRAPHY=1

CYLINDER=1 # ensures the closed geometry

We add our PLC script in form of a PARAGEOMETRY variable such that mesh/mesh.poly
will be created by it.

PARAGEOMETRY=mymesh.sh

A further refinement can be achieved by quality improvement (PARAQUALITY) as it is
quite coarse, local refinement (PARADX) or maximum cell size (PARAMAXCELLSIZE).
In order to obtain an accurate we use a refinement for the primary mesh of 1cm and quadratic
shape functions ending in about 32000 nodes.

PRIMDX=0.01

PRIMP2MESH=1

Figure 20 shows the course from the mesh input via the parameter mesh to the final result.

18Since the electrodes show no significant extension compared to the column size, we put the points not onto
the surface but moved it 1cm inside, see Rücker and Günther (2011) for optimizing the optimum point.
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Figure 20: PLC (left), parameter mesh (center) and inversion result (right) of the soil column
experiment.

For experiments with standing columns the z direction is different due to gravity. Therefore it
might be helpful to run the inversion on a triangular prism mesh and to regularize the vertical
direction through ZWEIGHT. Note that such a script that is applied through PARAMESH
should be accompanied by a PARAGEOMETRY script generating the outer PLC for the
primary potentials.

In important Note:

We computed the electrode positions such that they fall exactly on the boundary of our cylin-
drical prism (there is some snapping to avoid rounding errors). With a different number of
prism sides it can easily happen that electrode positions fall outside of the PLC or very closely
inside. Whereas the first case leads to errors, the latter leads to unnecessary fine discretization
at these points. Generally, there are two alternatives that have been discussed by Rücker and
Günther (2011):

• Electrodes are never infinitely small points (implying infinite current density) but have
real sizes. If the electrode size is significant compared to their distance, one can model the
real shape by the complete electrode model (CEM) as described by Rücker and Günther
(2011). Although this is easy to model, it this implies effort when creating the different
meshes in inversion.

• An alternative is to put the electrode inside. Rücker and Günther (2011) simulated a
cubic model tank and found that a replacement point at about 60% of along the electrode
axis decreases the errors to a minimum.

5. Incorporating prior information

Often there is additional information about the subsurface. An incorporation into the inversion
process is always to be preferred over a comparison of the results.
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5.1. Structural constraints

Günther and Rücker (2006) presented a more general minimisation approach that allows for
arbitrary weights for each boundary between model cells. The numerical approach is explained
in more details by Rücker (2010). In existence of a known discontinuity this can be set to zero
allowing for (but not enforcing) an arbitrary jump in resistivity. Such constraints can be used
in both 2D (Bazin and Pfaffhuber, 2013) and 3D Doetsch et al. (2012) cases.
The example also presented by Rücker (2010) is located in (examples/inversion/inversion/-
2dstruct) was measured and friendly provided by the K-UTec GmbH Sondershausen (T.
Schicht). Aim of the study was bedrock detection carried out with resistivity and refraction
seismics. The velocity structure showed to be a very clear 2-layer case. So the result (layer
boundary) of the refraction study can serve as structural information.
The file bedrock.xz contains the course of the boundary as x-z pairs. We now include this
file into the configuration file using the INTERFACE option. In order to compare the result
with and without structure we call
$ bertNew2D bedrock.dat > bert.cfg

$ bert bert.cfg all show

$ echo INTERFACE=bedrock.xz >> bert.cfg

$ bert bert.cfg all show
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Figure 21: Resistivity distribution without (left) and with (right) structural information.

Figure 21 shows the subsurface images without and with the structural information. Obviously
the additional information leads to a much clearer image of the subsurface. At most positions
there is a sharp resistivity contrast at the boundary. However at some positions there is either
a difference to velocity or the refraction result is ambiguous.
Several interfaces may be present in the INTERFACE file, separated by a blank line. Struc-
tural constraints may also come from borehole descriptions indicating a layer at a certain
depth. This results in several small lines extending to the sides depending on the lateral repre-
sentativity of the boreholes. Three-dimensional interfaces are point lists that are triangulated
and put as facets in the model.

5.2. Region-specific control by an underwater example

In the preceding example we almost cut the model into two parts that are known from prior
knowledge. Very often, different parts of the subsurface, i.e. regions, need different treatment.
This can be geological units or artificial stuff like boreholes or cables in the ground. Flechsig
et al. (2010) used only single regions to invert a very sparse data set. Doetsch et al. (2010)
used boreholes as single regions to image an aquifer with cross-hole ERT. Coscia et al. (2011)
embedded this into a large 3D model to monitor aquifer dynamics.
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The technique behind regions is described in more detail by Rücker (2010). Regions are parts
of the mesh with a constant marker, their behaviour can be easily described by a region file.
The distribution of this marker can be looked at by calling bert cfg showMarker. By default,
there is an inversion region (marker 2) embedded into a modelling region (marker 1) whose
resistivities are not part of the inversion but are used in forward calculation by prolongation
from the inversion region. We suggest using the lowest number for this background region as
this is the default behaviour in case several regions are detected in a non-Neumann body.

The region file

The main control over the inversion is done by a so-called region file using the keyword RE-
GIONFILE (and TIMELAPSEREGIONFILE for the time step inversion). Of course,
many options such as LAMBDA, ZWEIGHT, UPPERBOUND, LOWERBOUND can
be set directly in the cfg file for the whole inversion domain (whether it is one region or more),
but can be adjusted for different regions individually. For a more rigorous description we
refer to the GIMLi tutorial, appendix C. The region file is a column file with different parts
separated by a token list (led by a # character), which can look like

#no start Ctype MC zWeight Trans lBound uBound

0 100 1 1 0.2 log 50 1000

1 30 0 0.2 1 log 10 200

#no single start

2 1 100

#no background

-1 1

#interregion

0 2 0.2

The number No can also be a * for all regions and should lead the token list. The other tokens
define values for the numbered token.

start starting resistivity

Ctype constraint type (1/-smoothness 1st/2nd order, 0-minimum length, 10/20 mixed 1st/2nd
with zeroth order)

MC model control (individual lambda relative to the global lambda)

zWeight constraint weight for vertical boundaries (only for Ctype=1)

trans model transformation, log(LU) by default, others are lin or tan

lBound lower resistivity bound (for Trans=log)

uBound upper resistivity bound (for Trans=log)

single this region is treated such that the resistivity is constant

fix this region has a known conductivity that is used in the forward calculation but not in
inversion
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background this region is background and filled with resistivity of the neighbouring regions
for the forward calculation, for a non-Neumann domain without region file the lowest
number is the background by default

interregion two regions are by default decoupled (constraint weight is zero), but can be cou-
pled19

In the above example there are two main regions with different starting values, valid ranges
and constraints. Another region is treated constant and is coupled to region 0 weakly. Finally,
there is one background region.

The lake case

The lake data set was measured by the Leibniz Institute for Applied Geophysics, Hannover (W.
Südekum and T. Günther) and is located at examples/inversion/region/lake. Aim was to
delineate sedimentation structures beneath the Feldungel lake near Osnabrueck. Electrodes
have been spread out from one shore along the lake bottom onto the other shore. The spacing
was 2m and both Wenner-alpha and Wenner-beta were measured and combined. Electrode
positions (0 to -2.6m height) and resistances are the input file. Since the lake resistivity is
a distinct known (both its geometry and the resistivity of 22.5Ωm) body, it will be treated
differently.

1. We start as for a topographic case and generate the meshing input bert bert.cfg

domain

2. As a result we obtain the poly file mesh/mesh.poly which we copy to mymesh.poly20

3. We need to add the water surface by an edge between the left and the right shore
(innermost points with zero altitude). A view into the poly file shows that they are
represented by the points 3 and 138. So we add another edge at the end of the edges
(line 303) by inserting the line 151 3 138 -1 (number n1 n2 edgemarker) and increase the
number of edges in line 152 from 151 to 152

4. Finally we add a region marker somewhere in the lake with marker 1 (not inverted) by
appending the line 2 50 -1 1 0.0 (number x y marker maxTriangleSize) and increasing
the number of regions from 2 to 3.

We use this altered poly file in the inversion by introducing PARAGEOMETRY=mymesh.poly
into the cfg file. This means that mesh.poly in the mesh directory is created by copying
mymesh.poly. Alternatively we can put here a bash script or a Python script that generates
the geometry (mesh/mesh.poly).
Figure 22 shows a section of the input PLC after calling bert bert.cfg showpoly. As usual,
we have the outer region with marker 1 and the inner region with marker 2, additionally we
have the marker 3 for the lake. By default the outer region is a background region in case
several regions are available without a region file.
We use the following options

19You can use the former key Inter-region as well but this is erroneous due to the variety of dashes in different
key tables we recommend using Interregion.

20see triangle page https://www.cs.cmu.edu/~quake/triangle.research.html for file description
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Figure 22: Representation of the input PLC for the lake case.

ZWEIGHT=0.2 # enhances layered (sediment) structures

OVERRIDEERROR=1 # do not use the measured errors in file (optimistic), but:

INPUTERRLEVEL=2 # 2% plus

INPUTERRVOLTAGE=20e-6 # 20 microvolts

cMin=15

cMax=500

and the inversion converges at 1 < χ2 < 2. Figure 23 shows the resulting resistivity distri-
bution. The lake sediments show generally by very low resistivities even below the measured
value of 22.5Ωm.
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Figure 23: Inversion result of the water case using two regions that are automatically decoupled.

The regions are automatically decoupled (no smoothness constraints between them) as in the
last example. Figure 24a shows the inversion result using normal treatment (by setting the
region marker of the lake to 2 or by using polyFlatWorld as PARAGEOMETRY), i.e.
smoothness constraints across the whole model. We see a lot of structures related to the lake
bottom and irrealisticly high water resistivity. Now we start treating the

REGIONFILE=region.control

We first define the water region (marker 3) as a single-parameter region and the subsurface
as a normal inversion region with smoothness constraints that enhance vertical structures, a
range of 10-1000Ωm and a starting resistivity of 100Ωm:

#No start Trans zWeight Ctype lBound uBound

2 100 log 0.1 1 10 1000

#No single start

3 1 22.5
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#No background

1 1

Figure 24b shows the result. The main image is similar but the oscillation at the sea-bottom
are gone. The resistivity increase at the bottom disappeared and reveals more information
about the deeper layers. However, the resistivity of the lake obtains values of about 16Ωm,
which is lower than the expected value of 22.5Ωm measured at the side, even though we used
it as starting value.
We could narrow the resistivity value of the lake by expanding the lines for region 3 by upper
and lower resistivity bounds:

#No single start Trans lBound uBound

3 1 22.5 log 22 23

Whereas a single region is represented by one unknown, one can also associating it with a fixed
value, thus making it a background region (i.e. removing it from the inversion completely).

#No fix

3 22.5

Whereas a normal background (region 1) is filled up (prolongated) from the inversion model
with neighbouring resistivity, this region is filled with the fixed value.
The result, shown in Figure 24c, is equally well fitting the data. Both results are obviously
equivalent, in this full-space problem the lake resistivity cannot be independently obtained and
has to be added by additional information.
Alternatively we can assume that the lake bottom sediments have very similar resistivity to
the water. Therefore we remove the fix again and introduce inter-region constraints between
the two regions:

#No single start

3 1 22.5

#Interregion

2 3 0.5

So the otherwise decoupled regions are connected by smoothness constraints with a strength
that is a factor 2 weaker than normal. The result, equivalently fitting the data, is shown in
Figure 24d. It is very similar to Fig. 24c and thus supporting the measured conductivity.
On the other hand it is not clear from our simple probes that the water resistivity is really
constant. So we can treat the water as normal region with proper upper and lower bounds. In
order to have our target structure in the water layer we increase the model control (relative
regularization parameter) for that region by a factor of 2. The inter-region constraints are
kept.

#No start Trans zWeight Ctype lBound uBound MC

2 25 log 0.1 1 10 1000 1

3 22.5 log 0.01 1 10 30 3

#Interregion

2 3 0.5

The result (Fig. 24e) however, is not very different from the other but demonstrates the flexi-
bility of the region approach.
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Figure 24: Inversion result with different options (top to bottom): a) smoothness-everywhere,
b) lake as single-parameter region, c) lake as fixed region, d) inter-region constraints
between lake and lake-bottom, e) like d but with variable water body.
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6. Time-lapse ERT

We are often interested in ongoing physical processes and use ERT for monitoring experiments.
An arbitrary number of subsequent data sets can be processed by writing their file names in a
text file and passing it by TIMESTEPS=filename.

6.1. Strategies

There is a large number of different strategies for doing time-lapse inversion and accordingly
a large number of associated keys.

1. The easiest is an independent inversion, which can be easily done using a simple shell
script that just overwrites DATAFILE. However, very frequently artifacts arise, espe-
cially when looking at the changes (ratios).

2. Another variant is ratio or quotient inversion, i.e. calculating the data ratio and inverting
them as apparent resistivity (Schütze et al., 2002). However, this approach is valid only
for small contrasts since it does not take the sensitivity distribution as function of the
real model into account. BERT1 used this approach by default, here it can still be used
by RATIOSTEP=1.

3. There is the class of reference model based schemes, where for each frame a full min-
imization is done, but the models are constrained taking the model of either the first
(default) or the preceding (TIMELAPSESTEPMODEL=1) frame as reference. It is
the most general scheme since the used measuring arrays and even the electrode positions
can vary over time. Therefore it is the default method.

4. A special scheme is the so-called difference inversion after LaBrecque and Yang (2001).
It is based on the observation that there is a significant amount of systematic errors in
all time steps. Therefore, if TIMELAPSEREMOVEMISFIT=1, the data dk of kth

frame is corrected by the misfit of the first frame (d0) such that

∥dk − f(mk)− d0 + f(m0)∥

is minimized next to the regularization of the model difference mk −m0 (alread in the
last scheme). We recommend this in case of known systematic errors. If only systematic
errors are present this will only increase error and thus smoothness. At any rate, identical
arrays are used.

5. From an inversion point of view, the most rigorous method is a full discretization in time
and simultaneous inversion. This is done efficiently using block matrices but up to now
available only in the Python managers.

6.2. Processing and options

An issue of ongoing research are time-depending error models. Analysis of normal-reciprocal
data can possibly overcome the problem of differing effective smoothness.
Generally, the arrays in the individual data files can be different. However, to use the difference
inversion, they must be identical. To avoid stripping data by filter rules, we recommend using
DOWNWEIGHT=1. Therefore the data are preprocessed into a data cube (number vs.
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time). Non-existing data or measurements outside the filter rules stay in the file, but are
down-weighted by a large error.
To define the time-lapse strategy, the above mentioned keys are used. By default, reference in-
version against the first frame is done, except TIMELAPSESTEPMODEL=1 determines
regularization of time steps. La Brecque’s method (different inversion) is used if TIME-
LAPSEREMOVEMISFIT=1.
Time-lapse inversion can take long computing times. If the changes are small, the main com-
putational effort, the re-calculation of the Jacobian matrix can be omitted by using FAST-
TIMELAPSE=1, however only effective in case of identical arrays.
Since the model difference has generally different range and shape, its regularization can differ
from the static inversion. The key LAMBDATIMELAPSE defines regularization strength,
TIMELAPSECONSTRAINT the type of constraints (0, 1, 2, 10 or 20, see section 2.1).
Whereas 0th order constraints (no smoothness) are often prohibitive for static inversion due
to the large artifacts, it can be interesting for time-lapse problems, since smoothness does not
systematically change the model space. More generally, a region file (see section 5.2) can be
applied for the time step inversion specifically by TIMELAPSEREGIONFILE.
The results of the inversion are contained in the binary files modelAbs.bmat (absolute values)
and modelDiff.bmat (relative differences in %). For 2D cases, they can be used as argument,
along with a number specifying the time step, behind the show/mkpdf commands to display
the model or its deviation, e.g.
$ bert cfg show modelAbs.bmat 5

shows the model for the 5th timestep,
$ bert cfg show modelDiff.bmat 5

shows the relative differences to the base model (default) or the preceding model (TIMELAPS-
ESTEPMODEL=1). Note that in these cases cMin/cMax values MUST be given.
Omitting the time step number displays the baseline model (target show) or creates a multi-
page pdf (target mkpdf). In both 2D and 3D, for each timestep i a file dcinv.result i.vtk is
created so that in Paraview they are automatically loaded as time steps if loading the group
dcinv.result..vtk. The vtk files hold both absolute values and model ratios with respect to
the baseline.

6.3. Crosshole timelapse measurements

Let’s go back to the crosshole case 2dxh (see section 3.2) and unpack the time data files in
2dxh-timelapse.zip. In 2006 the BGS injected a highly saline tracer in borehole number 8 and
measured 36 data sets every 40 minutes such that a whole day was covered. The subsequent
files are named 01.dat, 02.dat, ... and are assembled in timesteps.txt.
By including TIMESTEPS=timesteps.txt and calling bert bert.cfg calc again. As a
result we obtain several vtk files that are recognized by ParaView as time steps, allowing easy
scrolling through the times.
Figure 25 shows some selected time steps that allow for seeing the tracer flow toward the left
boundary. Note that these are only preliminary results that are used to present how BERT is
working. With more sophisticated time lapse strategies the monitoring process can be traced
more accurately.
Mostly, one is interested in the changes (ratios) and wants to test several algorithms, which is
done for different settings in Fig. 26.
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Figure 25: Inversion results 3 hours (upper left), 7 hours (upper right), 12 hours (lower left)
and 16.5 hours (lower right) after tracer injection.

From the inversions with regularization orders 0, 1 and 2 (lines 3-5) the classical smoothness
constraints (1st/2nd with slightly decreased vertical weights) exhibit the largest effects, but
also the largest artifacts above and below the tracer. Minimum-length regularization of the
model difference does not show such artifacts but increases at the electrodes interrupting the
tracer shape. If (isotropic) smoothness and pure deviation are combined (last line), the least
artifacts are observed, but the shape of the tracer remains interrupted. Further tuning may
lead to even nicer images, however it is not clear beforehand which method is best and how
reality looks like.

6.4. Soil column measurements

We go back to the soil column example from section 4.4. After irrigating a certain amount of
water, every 2 hours a complete data set was measured and included in the TIMESERIES
file. Since the changes are relatively low, we take a look at the relative differences in the files
diff i.vtk with respect to the initial resistivity. Figure 27 shows 5 selected time steps. We can
see the water front intruding but at a certain stage the column is drying out again.
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Figure 27: Relative resistivity difference (in %) for the repeated measurements at about 2, 4,
6, 10 and 16 hours after irrigation.
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A. Installation

A.1. BERT for Windows users

BERT is successfully applied on Windows platforms, however, for bigger problems the per-
formance on Linux is probably better. Although building has actually become as easy as
under Linux, it is easily distributed as installer with binary files along with all examples and
documentation.
Since BERT is controlled on the command line, Windows users need a command shell compati-
ble with the Linux bash. Recently, the minimal system MSYS (minimal system) was brought to
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new version 2 that includes 64bit support and a package manager (pacman). Please download
the installer from https://msys2.github.io.
Install BERT, assuming under d:\software\BERT. Then this path must be known when work-
ing in the shell, either by changing the environment variable PATH under System Control

- System - Environment Variables or in the shell by typing
$ export PATH=$PATH:/d/software/BERT21

The latter command can also be called automatically at startup by inserting it into the
$(HOME)/.bashrc file in the home directory. Additionally, the variable PYTHONPATH
is used to tell python where to look for modules (pygimli and pybert - do not include these
names), therefore it should be set to d:\software\BERT in system control or using
$ export PYTHONPATH=/d/software/BERT.
Prepare your data and configuration file in a directory, go there in the shell by
$ cd /c/data/profile1/trial and run the inversion using bert bert.cfg all etc.
Note that if your Python distribution does not set the paths, you also need to do that, e.g. in
the .bashrc file, by, e.g.
$ export PATH=$PATH:/c/Software/Anaconda3
On newer Anaconda versions, there might be some dll files missing so that you additionally
need
$ export PATH=$PATH:/c/Software/Anaconda3/Library/bin
Of course you can also set up these paths, as the one for BERT, in the System Control.

A.2. BERT for Linux users

The easiest way to install BERT (and the necessary pyGIMLi) is using conda, a system that
conveniently installs binary releases as well as their prerequisites and cares about the path
variables to find the binaries and the Python libraries. It can be used from the Anaconda
Python distribution or from its lightweight alternative miniconda. At any rate we recommend
creating a separate environment into which it is installed. By doing so you can easily switch
between several versions of BERT/pyGIMLi or Python, e.g. by:
$ conda config --add channels gimli --add channels conda-forge

$ conda create -n bert

$ source activate bert

$ conda install pybert

For updating, one can just call
$ conda update -f pygimli pybert

There might be reasons (incompatible system, version conflict with other modules, urgent up-
date) when one needs to build pyGIMLi and the BERT binaries from the source. In this, case,
first follow the installation procedure provided at https://www.pygimli.org/installation.
html and the instructions given at https://www.gitlab.com/resistivity-net/bert. After
building pyGIMLi and bert, one needs to add the paths for the binaries (bert/build/bin), the
library (gimli/build/bin) and the Python modules, e.g. (best in the .bashrc file):
$ export PATH=$PATH:$HOME/src/bert/build/bin
$ export LD LIBRARY PATH=$LD LIBRARY PATH:$HOME/src/gimli/build/bin
$ export $PYTHONPATH:$HOME/src/gimli/gimli/python:$HOME/src/bert/bert/python

21Note that file names are in different from Windows, i.e., /c instead of c: and slash instead of backslash.
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B. Version history

BERT 2.4 (pyGIMLi 1.3)

2.4.1 19.01.2023 (pg 1.3.1) switch to Python 3.9, bug fixes

2.4.0 21.08.2022 (pg 1.3.0) improve TDIP/FDIP

BERT 2.3 (pyGIMLi 1.1/1.2, development limited to IP classes)

2.3.4 18.02.2022 (pg 1.2.6) avoid P2 mesh refinement in files, TDIP/HIRIP

2.3.3 12.12.2021 (pg 1.2.3) pyGIMLi update, TDIP/HIRIP, fix mesh bugs

2.3.2 01.08.2021 (pg 1.2.2) FDIP/TDIP updates

2.3.1 01.11.2020 (pg 1.1.1) update of FDIP/TDIP (Martin et al. 2020), Python 3.8

2.3.0 06.06.2020 (pg 1.1.0) upgrade to new pyGIMLi style, bug fixes

BERT 2.2 (pyGIMLi 1.0 with ERT core and ERTManager)

2.2.12 02.11.2019 (pg 1.0.12.1) mainly pyGIMLi fix, last pg 1.0

2.2.11 16.10.2019 (pg 1.0.12) improve TDIPdata class

2.2.10 01.04.2019 (pg 1.0.11) improve TDIPdata class

2.2.9 04.01.2019 (pg 1.0.10) first Python 3.7 version

2.2.8 30.10.2018 (pg 1.0.9) new TDIP class, minors and fixes

2.2.7 24.09.2018 (pg 1.0.7) convert and colors

2.2.6 13.02.2018 (pg 1.0.6 carneval edition): udf & res2dinv topo

2.2.5 12.01.2018 (pg 1.0.5) rather unknown version

2.2.4 17.11.2017 (pg 1.0.4 GELMON edition) minor stuff

2.2.3 15.09.2017 (pg 1.0.1) main tutorial update and bug fixes

2.2.2 21.08.2017 (pg 1.0.0) mainly pyGIMLi changes

2.2.1 21.07.2017 stable version available for Py 3.4, 3.5 and 3.6

2.2.0 16.06.2017 first version without C++ core library (all in GIMLi)

BERT 2.1 (end of libbert, increased Python use)

2.1.4 02.06.2017 last version with C++ BERT core library

2.1.3 03.03.2017 2nd Leipzig Workshop version

2.1.2 19.01.2017 first Python 3.5 build (from here default)

2.1.1 28.09.2016 stable bug-fixed post-workshop version (only Python 3.4)

2.1.0 21.09.2016 BERT Workshop Leipzig edition, new tutorial

BERT 2.0.x (originally 2.0RCx)

new core library libbert, establishing Python for visualization

2.0.19 17.08.2016 Günther&Martin (2016) paper defining FDIP

2.0.18 28.06.2016 do not use this version (a bug in 3D FEM)

2.0.17 24.05.2016

2.0.16 14.04.2016 intermediate undertested version

2.0.15 24.03.2016 Easter Egg (rename from 2RCx to 2.0.x)

2.0.14 26.11.2015 GelMon edition
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2.0.13 08.10.2015 (first working Resistivity Python class)

2.0.12 25.09.2015 from here only 64bit with WinPython3.4

2.0.11 14.09.2015 first 64bit version with Python3.4-64bit

2.0.11 14.08.2015 only 32bit version with Python3.4-32bit

2.0.10 09.07.2015 also Win64 with own Python64bit

2.0.9 18.05.2015

2.0.8 21.03.2015 first FDIP (SIPData) class

2.0.7 16.12.2014

2.0.6 17.10.2014

2.0.5 03.06.2014

2.0.4 02.12.2013

2.0.3 08.08.2013 also Win64 with Python32bit

2.0.2 17.04.2013

BERT 2 beta versions

2.0b23 06.08.2013

2.0b22 05.04.2013 also Win64 23.01.2013

2.0b21 22.11.2012 also Win64

2.0b19/20 29./30.05.2012

2.0b18 20.02.2012

2.0b17 13.02.2012 also Win64

2.0b16 10.01.2012 only Win64

2.0b15 20.10.2011 also Win64 15.11.2011

2.0b14 17.08.2011

2.0b13 06.07.2011

2.0b12 08.06.2011

2.0b11 13.04.2011

2.0b10 07.02.2011

2.0b8 02.11.2010

2.0b4-6 5-13.08.2010

2.0b3 28.07.2010

2.0b1 21.04.2010

BERT 1 (2004-2008-2013)

1.3.2 05.04.2013 final Win 32bit version

1.3.1 22.11.2013 also (final) Win64 version

1.3.0 30.05.2012 no more new features

1.2.5 30.08.2011 also first Win64 version

1.2.4 10.05.2011 Linux

1.2.3 21.04.2011 Linux

1.2.2 11.01.2011

1.2.1 03.12.2010

1.2.0 28.10.2010 Linux

1.1.0 25.06.2010 (also BERT2 beta versions starting)

1.1.1 27.10.2010
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1.0.3 17.11.2009

pre-versions 2006-2009

Main changes from version 1 to 2

Main improvements

• more flexible treatment of regions (different behaviour, constraints and transforms) ,
inter-region (de)coupling and therefore more possibilities to include prior knowledge

• more constraint types (zeroth, first and second order plus combinations of them) and a
stabler way of anisotropic regularization

• more element types such as rectangular, hexahedral, or prism meshes or a combination
of different elements

• use of different electrode types: nodes, surfaces (CEM electrodes) or node-free points (or
a mix of different types)

• easy data filtering using different MIN/MAX keywords

• lower/upper resistivity bounds independent of the data (in BERT1 they were also applied
to ρa)

• improved time-lapse strategies, e.g. full reference model or difference inversion

• improved direct visualization using pyGIMLi (Python bindings of GIMLi)

• improved speed (distributed computing thanks to BERTTHREADS) and convergence,
easier build procedure

• improved phase inversion due to more rigorous IP scheme

• ERT manager for easy script-based handling

Changes in commands

primPot/interpolate ⇒ pot - Formerly the primary potential was computed and interpo-
lated in two steps. Now the potentials are interpolated onto the forward mesh on-the-fly unless
otherwise stated by KEEPPRIMPOT=1.
correct ⇒ filter - As the command correct (called before calc) was leading to confusions,
the command filter now transforms the raw data into the desired inversion input including
apparent resistivity, geometric factor and error. Additionally filtering is done using MIN/MAX
keywords. For timelapse problems filter will homogenize the data array for the individual time
steps. In future versions an automated normal reciprocal analysis can be called if the data
allow for that.
calc/calcSensM ⇒ calc - The calcSensM command is not needed any more and fully replaced
by calc. Recalculation of the Jacobian is the default.
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New commands

sensOnly - calculate only the Jacobian matrix (for sensitivity or resolution studies)
version - prints out the version
show, showmesh, showdata, showerror, showfit, mkpdf - plots of different stuff (in case
of 2d geometry)
mkpdf, mkmeshpdf - automated pdf generation

C. Files and programs

Created files and their meaning

File types:

*.poly triangle (2d) or tetgen (3d) PLC format
*.bms binary mesh (house) format
*.vtk visual toolkit mesh or poly format (paraview)
*.mesh MEdit mesh format
*.vector ascii vector of floats
*.collect potential matrix of all electrodes

Directories and their content:

mesh mesh input (mesh.poly) and meshes (meshPara,meshSec,meshPrim, meshParaDomain).bms
primaryPot/pot( s.bmat)primary potentials (already on secondary mesh)
sens.bmat sensitivity columns (smatrix.*) or rows smatrixCol.*
result* saved result directory with most important files

Files in project or result directory:

command.history history of commands executed by bert
bert.log inversion log file
*.data filtered data file with apparent resistivities and errors
dcinv.result.vtk final result as vtk file
resistivity.vector final (projected) resistivity distribution
response.vector final model forward response
coverage.vector coverage (sum of absolute sensitivies)
model *.vector model vectors of individual iterations
mesh/mesh.poly mesh input PLC
mesh/meshParaDomain pure parameter mesh (use for visualization)
in case of debug mode (SAVEALOT=1)
response *.vector response vectors for each iteration
fop-model*.vtk forward models
linesearchPhi(D).vector linesearch vectors
constraint.matrix constraint matrix (sparse matrix with I, J, value)

Program calls used for BERT

Inversion and parameterization:
bert - main executable running all based on cfg file
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bertNew2D/2DTopo/2DCirc - CFG file generators for 2d cases (flat,topo,circle)
bertNew3D/3DTopo/3DCyl - CFG file generators for 3d cases (flat,topo,tank)
dcinv - actual inversion routine (see dcinv -h)
dcmod - forward modelling for synthetic (e.g. primary) potentials (see dcmod -h)
dcedit - filter raw data using numerical geometric factors
Mesh creation and alteration:

paradepth estimate appropriate model depth by 1D sensitivities
createParaMesh create parameter mesh from dat file
createSecondaryMesh create secondary mesh out of parameters
createSurface create 3d surface mesh from xyz point list
closeSurface close 3d surface mesh by surrounding boxes
prepareMeshRefinement insert refinemeht points
dctriangle triangle call
meshconvert convert mesh between various import formats

Poly tools - creating PLC objects:

polyCreateWorld makes a world with 2 surface and interior boundary
polyFlatWorld create world (2 regions) around electrodes=nodes
polyFreeWorld create world (2 regions) around electrodes (no nodes)
polyCreateCube create (unit) cube around origin
polyTranslate translate PLC
polyScale scale PLC
polyRotate rotate PLC
polyMerge merge 2 PLCs into a new one
polyAddVIP add points (e.g. electrodes) to PLC
polyAddProfile add profile of electrodes
polyRefineVIPS refine points by local refinement
polyConvert convert PLC to VTK or STL format
polyScripts.sh various PLC functions

D. Complete list of options and their default values

#
# Global s e t t i n g s
#
VERSION=2.0.19
DATAFILE=no t ex i s t i n g . dat # data f i l ename ( r equ i r ed )
DIMENSION=3 # dimension o f the problem (2 f o r 2d and 3 f o r 3d)
TOPOGRAPHY=0 # de f i n e s i f topography i s pre sent (0 or 1)
TOPOPOINTS= # f i l e with add i t i ona l coo rd ina t e s f o r 3d topography (x y z )
TOPOPOLY= # f i l e with add i t i ona l polygons ( sep . by blank l i n e ) f o r 3d topo
CYLINDER= # geometry i s c l o s ed
TIMESTEPS= # f i l e with the names o f add i t i ona l d a t a f i l e s f o r t ime lapse i nv e r s i on
PARAGEOMETRY= # s c r i p t ( python or bash ) c r e a t i ng geometry input (mesh/mesh . poly ) or f i l e
PARAMESH= # mesh or command c r ea t i ng the i nv e r s i on mesh (mesh/mesh . bms)
INTERFACE= # f i l e with x/z columns de s c r i b i ng (2d) i n t e r f a c e ( s ) ( separated by blank l i n e )
ELECTRODENODES=1 # e l e c t r o d e s are r epre s ented by nodes ( not yet i n t e rp r e t ed ! )
USEBERT1=0 # uses p r ev i ou s l y generated BERT 1 meshes , p o t e n t i a l s and s e n s i t i v i t y (BERT2)
KEEPPRIMPOT=0 # keep primary po t e n t i a l s on primary mesh , o therwi se i n t e r p o l a t e on−the−f l y (BERT2)
DEBUG=0 # pr i n t s even more d e t a i l e d in format ion and save important temporary f i l e s
SAVEALOT=0 # save a l o t o f f i l e s f o r debugging purposes

#
# Data s e t t i n g s
#
OVERRIDEERROR=0 # ove r r i d e s g iven e r r o r s with INPUTERRLEVEL and INPUTERRVOLTAGE
INPUTERRLEVEL=3 # input e r r o r l e v e l ( in percent ) i f no e r r o r g iven ( dced i t −p but s t i l l −e )
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INPUTERRVOLTAGE=100e−6 # input vo l tage e r r o r (V) i f no e r r o r g iven
KMIN=−9e99 # minimum geometr ic f a c t o r (BERT2)
KMAX=9e99 # maximum geometr ic f a c t o r (BERT2)
RMIN=0 # minimum apparent r e s i s t i v i t y (BERT2)
RMAX=9e99 # maximum apparent r e s i s t i v i t y (BERT2)
IPMIN=−9e99 # minimum IP value (BERT2)
IPMAX=9e99 # maximum IP value (BERT2)
ERRMAX=9e99 # maximum e r r o r es t imate (BERT2)
DOWNWEIGHT=0 # downweight in s t ead o f d e l e t i n g data to keep data s t ru c tu r e (BERT2)
ABSRHOA=0 # Force a l l apparent r e s i s t i v i t i e s to be p o s i t i v e

#
# Inve r s i on s e t t i n g s
#
CONSTRAINT=1 # con s t r a i n t type (1/2− f i r s t / second order , 0−min . length , 10/20 mix )
LAMBDA=20 # r e gu l a r i z a t i o n s t r ength
ZWEIGHT=1 # weight f o r pure ly v e r t i c a l g rad i en t s (BERT2)
LAMBDAOPT=0 # optimze lambda by us ing l−curve
CHI1OPT=0 # opt imize lambda such that CHIˆ2=1 (BERT2)
REGIONFILE= # reg ion f i l e f o r i nv e r s i on opt ions f o r each reg ion (BERT2)
BLOCKYMODEL=0 # i t e r a t i v e l y (L1) reweighted model roughness
ROBUSTDATA=0 # i t e r a t i v e l y (L1) reweighted data m i s f i t
LOWERBOUND=0.0 # lower r e s i s t i v i t y bound ( l oga r i thmic b a r r i e r )
UPPERBOUND=0.0 # upper r e s i s t i v i t y bound (0 . 0 = deact ivated )
RECALCJACOBIAN=1 # r e c a l c u l a t e jacob ian each i t e r a t i o n step ( d e f au l t in BERT2)
MAXITER=20 # maximum number o f i t e r a t i o n s t ep s
STARTMODEL= # s t a r t i n g model , e i t h e r a value ( homogeneous model ) or a f i l ename hold ing a vector
RESOLUTIONFILE= # f i l e with i n d i c e s / p o s i t i o n s to compute r e s o l u t i o n ke rn e l s f o r (BERT2)
LAMBDADECREASE=1 # decrease lambda in each i t e r a t i o n by f a c t o r ( e . g . 0 . 8 )
LOCALREGULARIZATION=0 # l o c a l r e g u l a r i z a t i o n ( con s t r a in only model update in s t ead o f model )
#SINGVALUE=−1 # po t en t i a l va lue at e l e c t r ode s , f o r s e n s i t i v i t y (BERT1)
SENSMATDROPTOL=0 # drop to l e r anc e f o r Jacobian va lues ( spar se s to rage )
SENSMATMAXMEM=2000 # ava i l a b l e memory in MB fo r pre−a l l o c a t i o n o f spar se Jacobian
#
# Time lapse i nv e r s i on s e t t i n g s
#
LAMBDATIMELAPSE= # separate lambda value f o r t imesteps (BERT2)
TIMELAPSECONSTRAINT=1 # con s t r a i n t type ( see CONSTRAINT)
TIMELAPSEREGIONFILE= # reg ion f i l e ( s ee REGIONFILE)
TIMELAPSESTEPMODEL=0 # use preced ing model as r e f e r e n c e in s t ead o f f i r s t
FASTTIMELAPSE=0 # no jacob ian r e c a l c u l a t i o n f o r t imesteps ( only i d e n t i c a l a r rays ) (BERT2)
RATIOSTEP=0 # very s imple ( low−cont ra s t ) and f a s t method
TIMELAPSEREMOVEMISFIT=0 # d i f f e r e n c e i nv e r s i on a f t e r LaBreque et a l . (1996) (BERT2)

#
# Mesh s e t t i n g s
#
PARAMAXCELLSIZE=0 # maximum c e l l s i z e volume (m3) (DIMENSION=3); area (m2) (DIMENSION=2) f o r para mesh
PARAEDGELENGTH=0 # compute PARAMAXCELLSIZE by volume o f r e gu l a r t r i a n g l e / tet rahedron ( e a s i e r to con t r o l )
PRIMMAXCELLSIZE=0 # maximum c e l l s i z e volume (m3) (DIMENSION=3); area (m2) (DIMENSION=2) f o r prim mesh
PARADEPTH=0 # maximum depth o f parameter domain in meter (0 = automatic e s t imat ion by 1d coverage )
PARABOUNDARY=5 # boundary around e l e c t r o d e s in parameter domain ( percent )
SPLINEBOUNDARY=0 # sp l i n e c i r c l e boundary in s t ead o f p i e c ew i s e l i n e a r i n t e r p o l a t i o n
EQUIDISTBOUNDARY=1 # equ id i s t an t r e f i n e d space between e l e c t r o d e s (2d) ( d e f au l t in BERT2)
BOUNDARY=500 # s i z e o f boundary area around parameter domain
MESHGEN=tetgen # command or l o c a t i o n 3d mesh generator
TETGENTOLERANCE=1e−12 # tetgen t o l e r an c e l im i t
TETGENPRESERVEBOUNDARY=0 # tetgen should suppress s p l i t t i n g o f boundary f a c e t s or segments
LOOPTETGEN=0 # use tetgen i t s e l f to s l i g h t l y improve mesh qua l i t y due to r epeat ing tetgen c a l l s
PARADX=0.0 # re f inement f o r para mesh ( va lues >0.5 w i l l be f o r c ed to 0 . 5 )
GRID=0 # generate r e gu l a r ( q u a d r i l i t e r a l or hexahedral ) mesh ( only TOPOGRAPHY=0, BERT2)
LAYERS=10 # number o f l a y e r s to use f o r g r id ( f o r GRID=1 only )
PARADZ=1 # laye r th i ckne s s to use f o r g r id ( f o r GRID=1 only )
PRIMDX=0.1 # e l e c t r od e re f inement ( prim mesh ) ( note : r e l a t i v e in 2d , abso lu te in 3d)
PRIMDX R=0.0 # e l e c t r od e re f inement ( prim mesh ) dr in cente r d i r e c t i o n ( ove r i d e s PRIMDX)
PARA2DQUALITY=33.0 # parameter g r id ( from 25 ( very bad ) to 35 ( good ) )
PRIM2DQUALITY=33.4 # primary gr id ( from 25 ( very bad ) to 35 ( good ) )
PARA3DQUALITY=1.5 # parameter g r id ( from 1.11 ( good ) to 2 ( bad ) )
PRIM3DQUALITY=1.2 # primary gr id ( from 1.11 ( good ) to 2 ( bad ) )
SURFACEQUALITY=30 # qua l i t y o f topograph i ca l s u r f a c e g r id ( from 20 (bad ) to 35 ( good ) )
SURFACEMAXTRISIZE=0.0 # maximal t r i a n g l e area o f paramatr ic su r f a c e g r id
SURFACESMOOTH=0 # improve qua l i t y o f topograph i ca l s u r f a c e g r id
ICDROPTOL=0.0 # i f number o f nodes 200k drop to l e r anc e i s s e t f o r ICCG so l v e r ( only BERT1)
TOTALPOTENTIAL=0 # don ’ t use secondary po t en t i a l approach ( i . e . f o r CEM meshes )
OMITSECREFINE=0 # omit g l oba l re f inement f o r forward c a l c u l a t i o n ( f o r f i n e parameter meshes )
#SECMESHREFINE=1 # the oppos i t e (BERT1)
SECP2MESH=0 # use quadrat i c shape func t i on s in forward mesh (BERT2)
PRIMP2MESH=1 # use primary p2 mesh ( d e f au l t in BERT2)

#
# Direc tory s e t t i n g s
#
MESHBASENAME=mesh # basename f o r mesh f i l e s
DIRMESHS=mesh # d i r e c t o r y name f o r mesh f i l e s
DIRPOT=primaryPot # d i r e c t o r y name f o r primary and in t e rpo l a t ed po t e n t i a l s
DIRPRIMPOT=po t e n t i a l s # subd i r e c to ry name f o r primary po t e n t i a l s ( ob so l e t e )
DIRINTERPOLPOT=in t e rpo l a t ed # subd i r e c to ry name f o r i n t e rpo l a t ed p o t e n t i a l s ( ob so l e t e )
DIRSENS=sensM # d i r e c t o r y name f o r s e n s i t i v i t y matrix
OLDPRIMMESHSTYLE=0 # a l t e r n a t i v e way to c r ea t e primary mesh ( f o r i n t e r n a l use only )
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#
# Data f i l t e r i n g opt ions
#
KMIN=−9e99 # minimum geometr ic f a c t o r
KMAX=9e99 # maximum geometr ic f a c t o r
RMIN=0 # minimum apparent r e s i s t i v i t y
RMAX=9e99 # maximum apparent r e s i s t i v i t y
IPMIN=−9e99 # minimum apparent phase
IPMAX=9e99 # maximum apparent phase
ERRMAX=9e99 # maximum er r o r es t imate ”

#
# Plo t t ing s e t t i n g s (2d p l o t s with pytr ipatch )
#
PYTHON=python # command or l o c a t i o n o f python executab le
PYTRIPATCH=pytr ipatch # command and l o c a t i o n o f pyt r ipatch (2d mesh p l o t t i n g )
USECOVERAGE=1 # use coverage f o r alpha shading
SHOWELECTRODES=1 # show e l e c t r od e p o s i t i o n s as black dots
INTERPERC=3 # use 3% i n t e r p e r c e n t i l e s f o r model d i sp l ay with pytr ipatch
cMin= # minimum fo r co lour s c a l e
cMax= # minimum fo r co lour s c a l e

Permanently active options can be saved in a file .bertrc in the home directory (user-specific)
or in the folder where bert is located (for all users). This is particulaly interesting for SENS-
MATMAXMEM (recommend 50-80% of the available RAM in MB), the number of CPUs
to use in parallel (BERTTHREADS), or the Python executable (PYTHON).

E. User stories/HowTo’s

Sometimes users have very specific tasks requirements, mostly geometries, that are to be
incorporated. We present solutions, usually by some Python or bash scripts, that go beyond
the usual documentation, the corresponding input files are located in sub-folders of doc/HowTo.
Some of them are actually workarounds that are to be integrated in the following releases of
BERT 2 via new keywords but can still show users how to create solutions generally. Others are
user stories that demand quite complicated approaches that will never be integrated into BERT
directly. We hope that the existing stories tell you how to create solutions by combination of
the existing ones. If you have an interesting case already solved or that cannot be solved easily
but could be of interest for many users, don’t hesitate to contact us to integrate it.
Note that the solutions mainly deal with creating appropriate meshes and are written as shell
scripts, python scripts or a combination of both. Hence a basic knowledge in programming is
required to understand it. Here we present the main components used part by part, for the
full scripts see the files in the indicated directories. Usually we skip some general parts of it
such as the importing of libraries, usually

import pyg iml i as pg
import numpy as np
import matp lo t l i b . pyplot as p l t

For a complete list of the available functions, see the documentation of pyGIMLi (http:
//www.pygimli.org), Numpy/SciPy (http://www.scipy.org) or Matplotlib. Main data type
to be worked with is pg.Vector, which is compatible with np.array.

E.1. How to do 2d inversion with external topographic information

(To be included into BERT using INPUTFILE or with a python createParaMesh)
File: doc/HowTo/2d topofile

Task: use unidata format file with topography at end for inversion
Problem: the BERT 1 mesh tools does not support this yet
Solution: data have to be split and transformed to standard format.
TODO: generate a pygimli-only solution
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Before, the usual recommendation was to use DC2dInvRes and its option Save-Ohm-File, which
does the tape correction. Now we solve the problem in a shell script and invoke Python directly.
First we extract the number of electrodes and data and write the first parts (electrodes+data)
of the file such that be read by pygimli. Moreover we read the topography list and export it
to another file:

i n f i l e =’ p r o f i l e −topo . dat ’
d a t f i l e =’ p r o f i l e . dat ’
o u t f i l e =’ p r o f i l e . ohm’
t o p o f i l e =’ topo . xz ’
read l i n e < $ i n f i l e
ne l=${ l i n e%#∗}
l i n e =‘head −n $ [ n e l + 3 ] $ i n f i l e | t a i l −n 1 ‘
ndata=${ l i n e%#∗}
head −n $ [ n e l + $ndata + 4 ] $ i n f i l e > $ d a t f i l e
l i n e =‘head −n $ [ n e l + $ndata + 5 ] $ i n f i l e | t a i l −n 1 ‘
ntopo=${ l i n e%#∗}
echo $ne l $ndata $ntopo
t a i l −n $ntopo $ i n f i l e > $ t o p o f i l e

We now switch to python and read in the file and extract electrode positions. We compute
the tape distance along the profile and use the topography to interpolate it onto the electrode
positions.

data = pg . DataContainer ( ’ $da t f i l e ’ )
p r i n t ( data )
x , z = np . l oadtx t ( ’ $ t opo f i l e ’ , unpack=True )
t t = np . hstack ( ( 0 . , np . cumsum(np . s q r t (np . d i f f ( x)∗∗2+np . d i f f ( z ) ∗ ∗ 2 ) ) ) )
xe = [ e l . pos ( ) [ 0 ] f o r e l in data . e l e c t r o d e s ( ) ]
z = np . i n t e rp ( xe , x , z )

However, usually the electrode positions have tape distances and not real x coordinates. There-
fore we have to account for their heights such that the tape distance remains constant. After
it we set

x = xe [0 ]+np . hstack ( ( 0 , np . cumsum(np . s q r t (np . d i f f ( xe)∗∗2−np . d i f f ( z ) ∗ ∗ 2 ) ) ) )
de = np . sq r t (np . d i f f ( x)∗∗2+np . d i f f ( z )∗∗2)
f o r i in range ( data . sensorCount ( ) ) :

data . s e tS en so rPo s i t i on ( i , pg . RVector3 (x [ i ] , 0 . 0 , z [ i ] ) )

data . save ( ’ $ ou t f i l e ’ , ’ a b m n u i R’ , ’ x z ’ )

That’s it! With the created file we can do a very classical inversion.

E.2. 2D inversion with given 3d coordinates

(To be included into standard bert automatically or via DIMENSION=2.5?)
Files: doc/Howto/3d coordinates: mkcoord.py, mk3dvtk.py
Task: do 2d inversion of profile with 3d coordinates and create appropriate vtk file
Problem: fit an appropriate line through inexact positions and transform result back to 3d
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1. Read data file and fit a profile line through electrodes

Input could be:
1a) 2d data file with 3d coordinates (x,y,z) for each electrode
1b) 2d flat earth data file and additional GPS positions file
I suppose the latter, more general, case with GPS positions for some (not necessarily all)
electrodes in a separate file gps.txt (profile distance, height, northing and easting).

tt , hh , yy , xx = np . l oadtx t ( ’ gps . txt ’ , unpack=True )
# tape d i s tance , he ight , north ing and ea s t i ng

After reading and plotting the coordinates we see typical errors of up to a few meters due
to GPS inaccuracies, which we want to eliminate. Therefore we fit a smooth curve by using
harmonic functions implemented in the pygimli function harmfit. From the resulting x and y
we compute the distance t along the tape, which is used for inversion.

x = harmf i t ( xx , tt , nCo e f f i c i e n t s =10) [0 ]
y = harmf i t ( yy , tt , nCo e f f i c i e n t s =10) [0 ]
z = harmf i t (hh , tt , nCo e f f i c i e n t s =15) [0 ]
t = np . hstack ( ( 0 . , np . cumsum(np . s q r t (np . d i f f ( x)∗∗2+np . d i f f ( y ) ∗ ∗ 2 ) ) ) ) # 2d d i s t anc e

The number of coefficients nCoefficients defines the complexity of the fitted curve and should
be large enough to describe the course, but not too large to avoid small-scaled oscillation.
Experience with different numbers with easily give good values for any data.

p l t . p l o t ( tt , hh , ’ bx− ’ , tt , z , ’ r − ’)
p l t . p l o t ( xx , yy , ’ bx− ’ , x , y , ’b− ’)

Figure 28 shows how the coordinates are approximated.
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Figure 28: Measured positions (blue) and approximated profile (red) along the tape (top) and
in the x-y plane
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2a. project positions onto profile

We now load the data container and interpolate the (tape) coordinates xe onto the 2d positions
t and z. We then run through all electrodes and change their 3d position to the 2d position
before saving the data to a 2d file.

data = pg . DataContainer ( ’ p r o f i l e . dat ’ )
xe = [ pos [ 0 ] f o r pos in data . s e n s o rPo s i t i o n s ( ) ]
x2d = np . i n t e rp ( xe , tt , t )
z2d = np . i n t e rp ( xe , tt , z )
f o r i in range ( data . sensorCount ( ) ) :

data . s e tS en so rPo s i t i on ( i , pg . RVector3 ( x2d [ i ] , 0 . 0 , z2d [ i ] ) )
data . save ( ’ p r o f i l e 2 d . ohm’ , ’ a b m n u i ’ , ’ x z ’ )

Furthermore we create a map from the 2d to the 3d coordinates for result projection.

POS = np . vstack ( ( x2d , x , y ) )
np . save txt ( ’ pos .map ’ , POS.T)

2b. calculate 2d and 3d geometric factors and correct u or R

We could actually take into account that the profile is not strictly straight. (G2d > G3d ⇒
u2d < u3d for const ρa ⇒ correct u2d = u3d ∗G3d/G2d) Create standard meshes, refine and run
dcmod with them.
NOT DONE YET

3. carry out 2d inversion and change positions in vtk file

A 2d inversion of the 2d data set is carried out using standard tools:

bertNew2DTopo p r o f i l e 2 d . ohm > bert . c f g
# add some other u s e f u l opt ions as va lue bounds or whatever
ber t ber t . c f g a l l

4. Projection of the result back to 3d domain

As a result we have a vtk file with 2d coordinates that need to be brought to 3d. We read the
mesh and save the node positions in the variable tn and zn:

mesh = pg .Mesh ( ’ dcinv . r e s u l t . vtk ’ )
tn = [ n . pos ( ) [ 0 ] f o r n in mesh . nodes ( ) ]
zn = [ n . pos ( ) [ 1 ] f o r n in mesh . nodes ( ) ]

Then we load the previously saved map and interpolate the tn to real x and y:

tt , xx , yy = np . l oadtx t ( ’ pos .map ’ , unpack=True )
xn = np . i n t e rp ( tn , tt , xx )
yn = np . i n t e rp ( tn , tt , yy )

Finally we set the positions of the individual nodes and export the file.

f o r i , n in enumerate (mesh . nodes ( ) ) :
n . setPos ( pg . RVector3 ( xn [ i ] , yn [ i ] , zn [ i ] ) )

mesh . exportVTK ( ’ r e su l t 3d . vtk ’ )
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The result is then displayed in Figure 29. Doing so for several profiles they can easily displayed
together in Paraview or also exported to other programs such as GoCad or any GIS software.

Figure 29: Inversion result displayed in 3D.

E.3. User-defined regular 2d mesh

(to be included into BERT using any DX keyword or a script like polyRectWorld)
doc/howto/regular mesh2d

Task: inversion on regular rectangular meshes
Problem: necessary boundary should consist of triangles in order to keep node numbers small
Solution: create regular 2d mesh for the parameters and add a triangle boundary box for
accurate solution due to boundary conditions.
As in the next example, a grid is created and its boundary is integrated into a bigger box, which
is merged and combined with the regular mesh. In 2D this task is very easy and implemented
in the pygimli function appendTriangleBoundary. The following python script should be self-
readable:

from pygiml i . v iewer import showMesh
from pygiml i . meshtools import appendTriangleBoundary

data = pg . DataContainer ( ’ g a l l e r y . dat ’ )
xmin = data . s en s o rPo s i t i on ( 0 ) [ 0 ]
xmax = data . s en s o rPo s i t i on ( data . sensorCount ( ) − 1 ) [ 0 ]
dx = ( data . s en s o rPo s i t i on ( 1 ) [ 0 ] − xmin ) / 2 .
zmax = 10

nb = 2
x = pg . a svec to r (np . arange (xmin−dx∗nb , xmax+dx∗(nb+1) , dx ) )
z = pg . a svec to r (np . arange(− np . c e i l ( zmax / dx ) , 1 . ) ∗ dx )

mesh = pg .Mesh (2 ) # new 2d mesh
mesh . create2DGrid ( x , z )
f o r c in mesh . c e l l s ( ) :
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c . setMarker (2 ) # se t a l l markers to 2

mesh2 = appendTriangleBoundary (mesh , 50 . , 5 0 . ) # the main th ing !
showMesh (mesh2 )
mesh2 . save ( ’mesh . bms ’ )

We now include the mesh by specifying PARAMESH=mesh.bms. Figure 30 shows the created
mixed element mesh and the inversion result.
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Figure 30: Created mixed mesh (left) and inversion result using regular meshes

Regular meshes may be advantageous over unstructured meshes if either (i) a predominant
layering should be better imaged or (ii) if cells with constant size are required, e.g. for crosshole
measurements.

E.4. How to invert 1d resistivity in a 2D domain

(could be option after integrating regular 2d meshes)
doc/Howto/1d vertical

Task: inversion of resistivity data from a vertical electrode chain
Problem: Gimli 1D forward operator does not handle subsurface sources
Solution: use 2D (BERT) forward operator and special quasi-1D mesh
The essential part is to create an appropriate mesh that requires our demands. We chose
a regular mesh, which can be easily created using the pygimli functions create2DMesh or
create3DMesh and set the markers such that all rectangles obtain an identical marker and can
later be treated as one single region. We could distribute the markers by hand but the above
functions already contain typical solutions: The markerType (0, 1, 2 or 12) command specifies,
which index (x and y) is increasing the marker with the axis. By default, all cells will have the
same marker. We use the index 2 to use constant y markers:

data=pg . DataContainer ( ’ vest−os t . dat ’ )
z1 = data . s en s o rPo s i t i on ( 0 ) ( ) [ 2 ] # z o f f i r s t e l e c t r o d e
z2 = data . s en s o rPo s i t i on ( 1 ) ( ) [ 2 ] # z o f second e l e c t r o d e
zN = data . s en s o rPo s i t i on ( data . sensorCount ( ) − 1 ) [ 2 ]
dz = z2 − z1 # regu l a r spac ing with e l e c t r o d e d i s t anc e
nb = 2 # number o f boundary e lements
nx2= 20 # ha l f number o f x c e l l s
# po s i t i o n vectors , r e gu l a r spac ing
xx = np . arange ( −nx2 , nx2 ) ∗ dz
zz = np . arange ( z1 − nb ∗ dz , zN + nb ∗ dz , dz )
mesh = pg . createMesh2D (xx , zz , 2)
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Note that the similar exists for create3DMesh. For appropriate outer space we insert this mesh
into a big box and fill the intermediate space by triangles using appendTriangleBoundary:

mesh2 = appendTriangleBoundary (mesh , 70 . , 7 0 . , marker=0, i sSubSur face=True )
p r i n t (mesh , mesh2 )
marker2 = mesh2 . ce l lMarker ( )
showMesh (mesh2 , data=marker2 , l i n e a r=True )
mesh2 . save ( ’mesh/mesh . bms ’ )

The python script applied using PARAMESH=mkmesh.py. Additionally we need to specify
a region file to treat each layer as a constant single region and the outside as background.
Between the layers smoothness constraints are defined using the inter-region constraints:

#No s i n g l e t rans lBound uBound
∗ 1 log 1 300
#No background
0 1
#Inter−r eg i on
∗ ∗ 1

Figure shows the inversion result derived from a data set using vertical buried electrodes in
the freshwater-saltwater interface below the north sea island Borkum. Since the data fit is at
about 1%, we presume that ehe lithology is just a rough image of fine layerings. Below the
last clay layer, the salt-water with resistivities below 1Ωm starts.

Figure 31: Inversion result (right) with lithology (left)
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E.5. Inversion on user-defined regular 3d mesh

(not really stable due to tetgen face creation)
doc/howto/regular mesh3d

Task: Use a regular 3D (FD-like) discretization for inversion with BERT
Problem: Create mixed mesh of tetrahedra (inversion part) and hexahedra (outer box)
BERT 2 supports hexahedral finite element computation both naturally or by dissecting each
hexahedron into 5 or 6 tetrahedra. Whereas the first variant is restricted to orthogonal hex-
ahedra, the latter could be used for a deformed regular mesh, e.g. with surface topography.
For inversion in unbounded domains, an outer box around the inversion domain is needed to
ensure the correctness of boundary conditions and thus accuracy. If the meshes are prolongated
regularly, we obtain very ugly cells with bad numerical behaviour and have a huge number of
nodes in the forward computation. Therefore we want to prolongate the mesh with tetrahedra.
A regular mesh can be created in pygimli using built-in functions. First, vectors are created
(specify min/max/dx) and used to create a mesh:

x = np . arange (xmin−dx∗nb , xmax+dx∗(nb+1) , dx )
y = np . arange (ymin−dx∗nb , ymax+dx∗(nb+1) , dx )
z = np . arange(−np . c e i l ( zmax / dx ) , 1 . ) ∗ dx
mesh = pg .Mesh (3 )
mesh . create3DGrid (x , y , z )

A second mesh is created by H2 refinement of the hexahedra into tetrahedra: The outer mesh
boundaries, which only have one neighboring cell, are set to marker 1 to be identified later.

mesh2 = pg .Mesh (3 ) # new 3d mesh
mesh2 . createH2Mesh (mesh ) # r e f i n e d
p r in t mesh , mesh2 # d i sp l ay node/ c e l l /boundary numbers
f o r b in mesh2 . boundar ies ( ) :

i f not (b . l e f t C e l l ( ) and b . r i g h tC e l l ( ) ) :
b . setMarker (1 )

mesh . save ( ’ para ’ )
mesh . exportVTK ( ’ para ’ )

Finally we extract the outer boundaries of the mesh and save it as poly file:

poly = pg .Mesh (3 )
poly . createMeshByBoundaries (mesh2 , mesh2 . findBoundaryByMarker ( 1 ) )
poly . exportAsTetgenPolyFi le ( ’ paraBoundary ’ )

We now create a world (big box with FE modelling boundary markers), merge it with the
parameter outer boundary and add a hole marker in the middle (in bash):

polyCreateWorld −x100 −y100 −z50 world # make big box
polyMerge world paraBoundary wor ldSur face # can take a whi l e
polyAddVIP −x 0 −y 0 −z −0.1 wor ldSur face # ho le marker in the middle

The PLC has now the faces of both and can be meshed with moderate quality

t e tgen −pazVACq2 wor ldSur face # r e s u l t w i l l be wor ldSur face . 1 . ∗
meshconvert −vBDM − i t −o worldBoundary wor ldSur face . 1 # convert

We now extract the outer surface of the resulting mesh by their -2 markers
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worldBoundary = pg .Mesh ( ’ worldBoundary . bms ’ )
worldPoly = pg .Mesh (3 )
worldPoly . createMeshByBoundaries ( worldBoundary ,

worldBoundary . findBoundaryByMarker (−2 , 0 ) )
worldPoly . exportAsTetgenPolyFi le ( ’ worldBoundary . poly ’ )

and obtain a triangulated surface mesh of the outer box without the inner. Therefore we have
to merge both surface meshes
$ polyMerge worldBoundary paraBoundary allBoundary

Note that the latter procedure can take really long since intersections between all face pairs
have to be checked. We can avoid this by adding the option -N to polyMerge, because we know
there are no intersections. As a side effect the nodes at the inner box boundary are doubled
and have to be removed, which we can establish by the script readmypolyfile.py:

Poly=pg .Mesh (3 )
f=open ( ’ al lBoundary . poly ’ , ’ r ’ )
l i n e 1=f . r e ad l i n e ( )
nnodes=in t ( l i n e 1 . s p l i t ( ) [ 0 ] )
nodes =[ ]
f o r i in range ( nnodes ) :

pos=f . r e ad l i n e ( ) . s p l i t ( )
p=pg . RVector3 ( f l o a t ( pos [ 1 ] ) , f l o a t ( pos [ 2 ] ) , f l o a t ( pos [ 3 ] ) )
n=Poly . createNodeWithCheck (p)
nodes . append (n)

l i n e 2=f . r e ad l i n e ( )
n f a c e s=in t ( l i n e 2 . s p l i t ( ) [ 0 ] )
f o r i in range ( n f a c e s ) :

b la = f . r e ad l i n e ( )
ind = f . r e ad l i n e ( ) . s p l i t ( )
f a = Poly . c r ea teTr iang l eFace ( nodes [ i n t ( ind [ 1 ] ) ] , nodes [ i n t ( ind [ 2 ] ) ] ,

nodes [ i n t ( ind [ 3 ] ) ] , 0 )
f a . setMarker (−2) # f o r outer boundary (mixed boundary cond i t i on s )

f . c l o s e ( )
Poly . exportAsTetgenPolyFi le ( ’ t e s t . poly ’ )

The resulting test.poly can now be meshed using tetgen -Y (keep faces):
$ tetgen -pazVACY -q2 test

If there are errors due to intersecting facets they can be identified using
$ tetgen -d test

$ meshconvert -V -it -o wrong test.1

We observed that tetgen 1.4.3 is doing a good job in contrast to 1.4.2. Check which version you
use (tetgen -h) and make sure you use 1.4.3. If tetgen meshes correctly, we have two meshes,
which have to be merged

Outer = pg .Mesh ( ’ r i g h t . bms ’ ) # outer box ( world )
Inner = pg .Mesh ( ’ para . bms ’ ) # inner box ( parameters )
p r i n t (Outer , Inner )
# s e t a l l outer c e l l s to 1 and inner c e l l s to 2
f o r c in Outer . c e l l s ( ) : c . setMarker (1 )

f o r c in Inner . c e l l s ( ) :
c . setMarker (2 )
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Outer . copyCel l ( c )

p r i n t ( Outer )
Outer . save ( ’mesh ’ )
Outer . exportVTK ( ’mesh ’ )

And there we go. The resulting mesh.bms can be used for inversion easily just by specifying
PARAMESH=mesh.bms in the cfg file. The whole script is either in doall.sh calling the individual
python files or in makeall.sh, where the python commands are directly invoked.

Figure 32: Boundary of the inner 3D grid (red faces and blue lines) and of the outer box (green
lines)

Note that the cells in the interior have the marker 2, i.e. the describe one region as usual in
inversion, however with tetrahedral cells since we divided each hexahedron as such. In order
to avoid this, we do not set the marker and keep the subsequently increasing numbers from
create3DGrid, so that every tetrahedron is one region with 5 tetrahedra. By specifying the
single attribute in a region file

#No s i n g l e t rans
∗ 1 log
#No background
0 1
#Inter−r eg i on
∗ ∗ 1

we actually invert for hexahedra with smoothness constraints between each other. Besides the
REGIONFILE=region.control keyword, SECMESHREFINE=0 is useful to avoid refinement of the
already refined cells.

E.6. 3D inversion and visualization of 2d profiles in a 3d topography

doc/HowTo/2d3dtopo

Origin: Thomas Günther & Dave Tanner (LIAG Hannover)
Task: Generate 2d and 3d data files from 3d DEM and visualize results
Problem: 2d profiles are local (tape-measure) and DEM global
Solution: reading pro-file, tape-unrolling and vtk file manipulation
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Since true 3d measurements (grid of electrodes) are often prohibitive due to limited electrodes,
usually pseudo-3d, i.e. 2d profiles - not necessarily parallel and perpendicular, are measured.
For georeferencing, total stations yield a digital elevation model and the course of the profiles
by a polygon of 2 or more points. The location of the profile is stored in a pro-file (used e.g.
by DC3dInvRes) with a line for each 2d profile looking like:

f i l e n am e o f 2 d f i l e x1 y1 x2 y2 . . .

First we read in the filenames and points:

XL, YL, FILES = [ ] , [ ] , [ ]
f i d = open ( ’ k i lmore2011 . pro ’ )
f o r l i n e in f i d :

FILES . append ( l i n e . s p l i t ( ) [ 0 ] )
XL. append (np . double ( l i n e . s p l i t ( ) [ 1 : : 2 ] ) )
YL. append (np . double ( l i n e . s p l i t ( ) [ 2 : : 2 ] ) )

f i d . c l o s e ( )

Next, we read in the DEM and make a Delaunay triangulation

import matp lo t l i b . t r i as mtri
x , y , z = np . l oadtx t ( ’ topo . xyz ’ , unpack=True )
t r i = mtri . Tr iangu la t i on (x , y )
i n t e r p l i n = mtri . L i n e a rTr i I n t e rpo l a t o r ( t r i , z )

We create a new 3d mesh with the DEM points as nodes and the triangulatation as cells:

f o r x1 , y1 , z1 in z ip (x , y , z ) :
mesh . createNode ( x1 , y1 , z1 )

f o r v in t r i . t r i a n g l e s :
mesh . c r e a t eCe l l ( pg . Tr iang l e (mesh . node ( i n t ( v [ 0 ] ) ) ,

mesh . node ( i n t ( v [ 1 ] ) ) , mesh . node ( i n t ( v [ 2 ] ) ) ) )

mesh . exportVTK ( ’ topo . vtk ’ )

For each of the profiles we need to roll-on the tape coordinates from the datafile on the
topography. Therefore we create a densely sampled point list along the profile course (given
by xl/yl arrays) and create a pure node mesh of it, before the topography is achieved using
the GIMLi surface mesh interpolation routine.

l e = np . hstack ( ( 0 . , np . cumsum(np . s q r t (np . d i f f ( x l )∗∗2+np . d i f f ( y l ) ∗ ∗ 2 ) ) ) )
x i = np . i n t e rp (np . l i n s p a c e ( l e [ 0 ] , l e [ −1] ,nump) , l e , x l )
y i = np . i n t e rp (np . l i n s p a c e ( l e [ 0 ] , l e [ −1] ,nump) , l e , y l )
z i = i n t e r p l i n ( xi , y i )

For the obtained point list we compute the tape distance along the topography and interpolate
all three coordinates from it.

dt = np . sq r t (np . d i f f ( x i )∗∗2 + np . d i f f ( y i )∗∗2 + np . d i f f ( z i )∗∗2 ) # d i f f e r e n c e s
t i = np . hstack ( ( 0 . , np . cumsum( dt ) ) ) # tape d i s t anc e along p r o f i l e
data = b . DataContainerERT ( d a t f i l e )
te=[pos . x ( ) f o r pos in data . s e n s o rPo s i t i o n s ( ) ]
ze = np . i n t e rp ( te , t i , z i )
xe = np . i n t e rp ( te , t i , x i )
ye = np . i n t e rp ( te , t i , y i )
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For a 2d inversion we need the direction along the profile. The tape-true coordinate mapping
is saved to some temporary file that will later be used.

x2d = np . hstack ( ( 0 . , np . cumsum(np . s q r t ( np . d i f f ( xe )∗∗2+np . d i f f ( ye )∗∗2 ) ) ) )
ALL = np . vstack ( ( te , xe , ye , ze ) )
np . save txt ( ’ p o s i t i o n s /’+ d a t f i l e . r ep l a c e ( ’ . dat ’ , ’ . txyz ’ ) , ALL.T)

First we want to generate a valid 2d file using the latter coordinate, saving exactly the field
read in:

f o r i in range ( data . sensorCount ( ) ) :
data . s e tS en so rPo s i t i on ( i , pg . RVector3 ( x2d [ i ] , 0 . 0 , zn [ i ] ) )

f i l ename2d = ’2 d f i l e s / ’ + d a t f i l e . r ep l a c e ( ’ . dat ’ , ’ 2d . dat ’ )
data . save ( f i lename2d , data . inputFormatStr ing ( ) )

Next, we set the coordinates to the real position and subsequently add the data to a previously
created empty data container.

f o r i in range ( data . sensorCount ( ) ) :
data . s e tS en so rPo s i t i on ( i , pg . RVector3 ( xe [ i ] , ye [ i ] , ze [ i ] ) )

data3d . add ( data )

We are now doing inversion of the individual 2d files and the 3d file. Whereas the 3d file
already has the correct 3d coordinates, we must back-transform the resulting vtk file. Assume
we have the results named the same way as the 2d data files but with the extension vtk. We
read in the vtk file and the map file previously created:

p o s f i l e = ’ p o s i t i o n s / ’ + d a t a f i l e . r ep l a c e ( ’ . dat ’ , ’ . txyz ’ )
t , x , y , z , x2d = np . l oadtx t ( p o s f i l e , unpack=True )

v t k f i l e = d a t f i l e . r ep l a c e ( ’ . dat ’ , ’ . vtk ’ )
mesh = pg .Mesh( v t k f i l e )

xm = pg . x (mesh . p o s i t i o n s ( ) ) # 2d x
zn = pg . x (mesh . p o s i t i o n s ( ) ) # z

Then we interpolate from the 2d coordinates to the 3d coordinates. Instead of numpy.interp
we need also to extrapolate since the mesh usually goes beyond the electrodes. For this reason
we write a simle interpolation-extrapolation function:

de f myextrap (x , xp , yp ) :
””” numpy . i n t e rp func t i on with l i n e a r ex t r apo l a t i on ”””
y = np . i n t e rp (x , xp , yp )
y = np . where (x<xp [ 0 ] , yp [0 ]+( x−xp [ 0 ] ) ∗ ( yp [0]−yp [ 1 ] ) / ( xp [0]−xp [ 1 ] ) , y )
y = np . where (x>xp [ −1] , yp[−1]+(x−xp [ −1 ] )∗ ( yp[−1]−yp [ −2 ] )/( xp[−1]−xp [ −2 ] ) , y )
re turn y

and use this function for determining x and y positions of the mesh nodes

xn = myextrap (xm, x2d , x )
yn = myextrap (xm, x2d , y )

Finally we set the positions of the mesh nodes and export the vtk.

f o r i in range (mesh . nodeCount ( ) ) :
mesh . node ( i ) . setPos ( pg . RVector3 ( xn [ i ] , yn [ i ] , zn [ i ] ) )
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mesh . exportVTK( ’3 dvtk / ’ + v t k f i l e )

Now all vtk files in the folder 3dvtk can be loaded into paraview to form a fence diagram.
Additionally the result from the 3d inversion can be loaded and compared to the 2d inversions.
If the topography does not show a large curvature, alternatively the 2d inversions could be done
with the original (tape measure) files and the back-transformation will add the topography:

xn = myextrap (xm, t , x )
yn = myextrap (xm, t , y )
zn = zn + myextrap ( tn , t , z )
f o r i in range (mesh . nodeCount ( ) ) :

mesh . node ( i ) . setPos ( pg . RVector3 ( xn [ i ] , yn [ i ] , zn [ i ] ) )

The resulting vtk files can be viewed together in ParaView and their visualization is very easy
to control by grouping the files. For even more convenience, the meshes can be joined into a
single vtk. Finally, the result looks like in Figure 33.

Figure 33: Fence diagram of 2d results with 3d surface mesh

E.7. Use a Hydrus3D mesh of a soil column for forward calculation

(note the limitation due to renumbering the boundary nodes)
doc/howto/Simulate Hydrus results

Origin: Ulla Noell (BGR Hannover)
Task: Use discretization and resistivity vector from Hydrus3D simulation
Problem: Append unstructured mesh boundary to (usually regular) tetrahedral mesh
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With the monitoring of hydraulic processes using ERT the demand for an efficient forward
calculation for a given water content and thus resistivity arises. Hydrus3D uses meshes of
tetrahedra that are usually regularly arranged. For an appropriate forward calculation bound-
aries far away from the parameters are needed. A further regular prolongation will cause a
huge increase of nodes and thus runtime. Therefore the parameter box is surrounded by un-
structed tetrahedra whose resistivity is determined using parameter prolongation as done in
inversion. The problem is very similar to the one of creating regular 3d meshes for inversion,
except that (a) the input is already a tetrahedal mesh and (b) the output must be defined
such that a forward calculation using dcmod can be directly called. According to (a), the first
part of creating the mesh and refining it is omitted. Instead, the Hydrus mesh is imported and
saved using the following pygimli script. (Unzip MESHTRIA.TXT.gz using gzip -d to obtain
the Hydrus3D mesh)

mesh = pg .Mesh (3 ) # new mesh
f = open ( ’MESHTRIA.TXT’ , ’ r ’ )
f o r i in range ( 6 ) : # read f i r s t 6 l i n e s

l i n e 1 = f . r e ad l i n e ( )

nnodes = in t ( l i n e 1 . s p l i t ( ) [ 0 ] ) # number o f nodes
n c e l l s = in t ( l i n e 1 . s p l i t ( ) [ 1 ] ) # and c e l l s
p r i n t nnodes , n c e l l s
l i n e 1 = f . r e ad l i n e ( )
nodes = [ ]
f o r n i in range ( nnodes ) : # read a l l nodes and append in mesh

pos = f . r e ad l i n e ( ) . s p l i t ( ) # no . , x , y , z −> po s i t i o n
p = pg . RVector3 ( f l o a t ( pos [ 1 ] ) , f l o a t ( pos [ 2 ] ) , f l o a t ( pos [ 3 ] ) )
n = mesh . createNode (p)
nodes . append (n)

l i n e 1=f . r e ad l i n e ( )
l i n e 1=f . r e ad l i n e ( )
c e l l s =[ ]
f o r c i in range ( n c e l l s ) : # read a l l c e l l s and append in mesh

pos = f . r e ad l i n e ( ) . s p l i t ( )
i , j , k , l = in t ( pos [ 1 ] ) , i n t ( pos [ 2 ] ) , i n t ( pos [ 3 ] ) , i n t ( pos [ 4 ] )
c = mesh . createTetrahedron ( nodes [ i −1] , nodes [ j −1] , nodes [ k−1] , nodes [ l −1])
c e l l s . append ( c )

f . c l o s e ( )

p r i n t mesh # pr in t mesh p r op e r t i e s and export as bms and vtk
mesh . save ( ’ hydrus ’ )
mesh . exportVTK ( ’ hydrus ’ )

As a result, we have hydrus.bms and hydrus.vtk and can visualize it using ParaView. Just as
in regular3d meshes, its boundary is exported as vtk file.

mesh . c r ea t eNe ighbour In fo s ( )
f o r b in mesh . boundar ies ( ) :

i f not (b . l e f t C e l l ( ) and b . r i g h tC e l l ( ) ) :
b . setMarker (1 )

poly = pg .Mesh (3 )
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poly . createMeshByBoundaries (mesh , mesh . findBoundaryByMarker ( 1 ) )
poly . exportAsTetgenPolyFi le ( ’ paraBoundary ’ )

The rest is just as in the other example, i.e. - Part 2: create world, mesh to obtain boundary -
Part 3: merge surfaces of inner and outer box and mesh together except that the markers for
the individual cells are not constantly 2 (inversion), but counted starting from 1.

# merge inner mesh in to outer
f o r m, c in enumerate ( Inner . c e l l s ( ) ) : # run through a l l c e l l s

nodes = pg . stdVectorNodes ( )
f o r i , n in enumerate ( c . nodes ( ) ) : # add nodes i f not e x i s t e n t

nodes . append (Outer . createNodeWithCheck (n . pos ( ) ) )
Outer . c r e a t eCe l l ( nodes , m+1 ) ;

Note further that the cells in the outer box keep the marker 0. In order to make a forward
calculation we first need to map the markers into resistivities by creating a two-column rho.map
file starting with 0 0 (marker zero is mapped into 0 resistivity, which means filling up with
neighboring values):

r e s = . . . # load from f i l e
ind = np . arange ( l en ( r e s ) + 1)
A = np . vstack ( ( ind , np . hstack ( ( 0 , r e s ) ) ) ) .T
f = open ( ’ rho .map ’ , ’w’ )
f o r row in A:

f . wr i t e ( ’%d ’ % row [ 0 ] + ’\ t ’ + ’%f ’ % row [ 1 ] + ’\n ’ )
f . c l o s e ( )

The final call to dcmod then reads
$ dcmod -v -S -a rho.map -s datafile mesh.bms

E.8. How to use Hydrus2D simulations for synthetic data inversion

doc/HowTo/Hydrus mesh2d

Contribution: Sarah Garre (KU Leuven)
Task: use a Hydrus2D mesh/resistivity for forward simulation and inversion the given trian-
gular mesh (MESHTRIA.TXT) exhibits topography
The background and results are explained in more details by Garre et al. (2012).
Problem: the given Hydrus mesh does not have

1. a boundary far enough to ensure accurate solutions

2. appropriate boundary conditions (mixed BC on the 3 outer boundaries in the subsurface)

Solution:

1. read in the native Hydrus2d format

2. add a box around the mesh with appropriate BC

3. triangulate outer space and merge with inner mesh

4. refine and do the forward calculation within pygimli

5. set up an inversion with surface/subsurface electrodes
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Figure 34: Resistivity mesh as obtained by Hydrus2d modelling

Figure 34 shows the mesh and given resistivity distribution as obtained from a hydraulic
simulation and application of Archie’s Law.
First we read in the MESHTRIA.TXT using the function readHydrus2dMesh, see pygimli/utils/mesh.py
for the code as an example how to read in ASCII files. Then we create neighboring informa-
tion, number the markers of all cells beginning by 1. With showMesh(mesh) we can display it
(from pygimli.viewer import showMesh).

import pyg iml i as pg

mesh = readHydrus2dMesh ( ’MESHTRIA.TXT’ )
mesh . c r ea t eNe ighbour In fo s ( )
f o r i , c in enumerate ( mesh . c e l l s ( ) ) :

c . setMarker ( i + 1 )

Next, we find all boundary nodes and sort them clock-wise:

x , y , bNodes = [ ] , [ ] , [ ]
f o r b in mesh . boundar ies ( ) :

i f not b . l e f t C e l l ( ) or not b . r i g h tC e l l ( ) :
f o r n in b . nodes ( ) :

i f n not in bNodes :
bNodes . append ( n )
x . append ( np . round ( n . pos ( ) . x ( ) ∗ 1e3 ) / 1e3 )
y . append ( np . round ( n . pos ( ) . y ( ) ∗ 1e3 ) / 1e3 )

xm = np .mean(x )
ym = np .mean(y )
ang l e s = np . array ( np . ang le ( x − xm + ( y − ym ) ∗ 1 j ) )
ind = np . a r g s o r t ( ang l e s )

We create an empty mesh, create the boundary nodes and connect them by creating edges:

poly = pg .Mesh (2 )
f o r i in range ( l en ( ind ) ) :

poly . createNode ( bNodes [ ind [ i ] ] . pos ( ) )
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f o r id in range ( 0 , poly . nodeCount ( ) ) :
poly . createEdge ( poly . node ( id ) , poly . node ( ( id + 1)%

poly . nodeCount ( ) ) , pg .MARKERBOUNDHOMOGENNEUMANN )

We now extract the four corners to construct the outer box.

y1b = min ( y [ x==min(x ) ] )
y1t = max( y [ x==min(x ) ] )
y2b = min ( y [ x==max(x ) ] )
y2t = max( y [ x==max(x ) ] )
x2t = max( x [ y==max(y ) ] )
xbound , ybound = 500 . , 500 .
n1 = poly . createNode ( pg . RVector3 ( min (x ) − xbound , y1t , 0 . 0 ) )
n2 = poly . createNode ( pg . RVector3 ( min (x ) − xbound , y1b − ybound , 0 . 0 ) )
n3 = poly . createNode ( pg . RVector3 ( max(x ) + xbound , y2b − ybound , 0 . 0 ) )
n4 = poly . createNode ( pg . RVector3 ( x2t + xbound , max(y ) , 0 . 0 ) )

The four corners are connected with each other and with the two upper corners of the inner
box:

poly . createEdge ( n1 , n2 , pg .MARKERBOUNDMIXED )
poly . createEdge ( n2 , n3 , pg .MARKERBOUNDMIXED )
poly . createEdge ( n3 , n4 , pg .MARKERBOUNDMIXED )
i 1=in t ( np . nonzero ( ( x [ ind]==min (x ) )&( y [ ind ] == y1t ) ) [ 0 ] [ 0 ] )
i 2=in t ( np . nonzero ( ( x [ ind]==x2t )&( y [ ind ] == max(y ) ) ) [ 0 ] [ 0 ] )
poly . createEdge (n1 , poly . node ( i 1 ) , pg .MARKERBOUNDHOMOGENNEUMANN )
poly . createEdge ( poly . node ( i 2 ) , n4 , pg .MARKERBOUNDHOMOGENNEUMANN )

We can output the poly file as vtk and show it:

poly . exportVTK ( ’ out . poly ’ )
showMesh ( poly )

We create a new triangle object, put a marker in and generate the mesh:

t r i = pg . TriangleWrapper ( poly ) # new t r i a n g l e ob j e c t
t r i . addRegionMarkerTmp ( 0 , pg . RVector3 ( mesh . xmin ( ) + 1 . ,

mesh . ymin ( ) + 1 . ) , −1 )
t r i . s e tSw i t che s ( ’−pzeAfaq34 ’ ) # plc , 0 index , a t t r i bu t e , qua l i t y 34
mesh2 = pg .Mesh (2 )
t r i . generate ( mesh2 )

Finally we copy all cells from the original mesh into the obtained mesh:

f o r c e l l in mesh . c e l l s ( ) :
mesh2 . copyCel l ( c e l l )

showMesh ( mesh2 )
mesh2 . save ( ’mesh . bms ’ )

Since a forward calculation requires higher accuracy we decide to do it by using total potential
calculation on a quadratic grid by making:

mesh3=pg .Mesh (2 )
mesh3 . createP2Mesh (mesh2 )
mesh3 . save ( ’ meshFor . bms ’ )
p r i n t mesh3
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Figure 35: Input for meshing (red and green lines) and combined mesh

Now we come to the actual forward calculation: The resistivity information is retrieved from
a VTK file by importing:

vtk=pg .Mesh (2 )
vtk . importVTK( ’ r e s i s t i v i t y . vtk ’ )
r e s=np . array ( vtk . exportData ( ’ R e s i s t i v i t y ’ ) )

The resistivity vector is brought into a map file using a std C++ map with the number(marker)
in the first column (key) and res in the second:

nr=np . arange ( l en ( r e s ))+1
resmap=np . vstack ( ( nr .T, r e s .T) ) .T
cel lMap = pg . stdMapF F ( )
f o r key , va l in resmap :

cel lMap [ key ]= va l

The resulting resistivity map is applied and empty cells, i.e. cells in the created outer region
(marker 0) obtain resistivity by prolongation:

mesh3 . mapCel lAttr ibutes ( cel lMap )
mesh3 . f i l lEmptyCe l l s ( mesh3 . f indCe l lByAtt r ibute ( 0 .0 ) , −1.0 )

We now load the scheme file (data without actual data), create a new modelling operator and
calculate it. The resulting u are treated as R.

data=pg . DataContainer ( ’ hydrus2d . shm ’ )
f=pg . DCMultiElectrodeModel l ing (mesh3 , data , True )
f . c a l c u l a t e ( data )
data . s e t ( ’ r ’ , data . u ( ) )
data . save ( ’ out . dat ’ , ’ a b m n r ’ )

Now we can do inversion of the data set by using the bert script. The problem here is that
we have both surface and subsurface electrodes which is not yet automatically covered by bert
(but will be soon). Therefore we create a dummy data file with only the surface electrodes,
use it for mesh generation and invert the synthetic data after adding some Gaussian noise to
it:

n s e l=36 # number o f s u r f a c e e l e c t r o d e s
ERR=1
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i n f i l e=out . dat
o u t f i l e=out0 . dat
d a t f i l e=syn . dat
# c r ea t e dummy data f i l e with only su r f a c e e l e c t r o d e s
echo $ns e l > $ o u t f i l e
head −n 2 $ i n f i l e | t a i l −n 1 >> $ o u t f i l e
head −n $ [ n s e l + 2 ] $ i n f i l e | t a i l −n $ns e l | tac >> $ o u t f i l e
echo 0 >> $ o u t f i l e
# c r ea t e c f g f i l e f o r gene ra t ing meshes
bertNew2DTopo $ o u t f i l e > bert0 . c f g
echo PARADEPTH=300 >> bert0 . c f g
echo PARADX=0.2 >> bert0 . c f g
# do only the meshes with the dummy f i l e
ber t bert0 . c f g meshs
# No i s i f y s yn the t i c data with Gaussian Noise
dced i t −vSEN −e $ERR −u 0 −o $ d a t f i l e $ i n f i l e
# c r ea t e normal c f g f i l e and do i nv e r s i o n
bertNew2DTopo $ d a t f i l e > bert . c f g
echo LAMBDA=300 >> bert . c f g
echo ZWEIGHT=0.1 >> bert . c f g
echo BLOCKYMODEL=1 >> bert . c f g
# cp mesh . bms mesh/ # use Hydrus mesh f o r i n v e r s i o n
ber t ber t . c f g pot c a l c

Figure 36 shows the obtained inversion result, which is close to the synthetic model. The very
low contrasts in the model and limited number of electrodes prevent a better reconstruction.
In case of realistic heterogeneities such a result could only be retrieved by a time-lapse scheme,
where all systematic effects and small-scale structures will be cancelled out.
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Figure 36: Obtained inversion result
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E.9. Simulate CEM ring electrodes in tilted boreholes

doc/howto/tilted boreholes

Contribution: Laure Beff (UC Louvain)
Task: Simulate the real geometric factors of ring electrodes using CEM-FEM
Problem: Define a mesh that contains tilted borehole tools with ring electrodes
The borehole probes are cylinders with metal ring electrodes at certain positions. Cylinders
are approximated by regular prisms (e.g. 6 segments), which can be created by

createCube −Z −s 6 cube

creating a 1x1x1m cylinder centered at the origin. The space of the cylinder is disregarded
from meshing by adding a hole marker using -H. The probe tool itself consists of a sequence
of non electrodes and electrodes, which are subsequently merged with each other and after
translation to the borehole position they are merged with the big box (world in which the
simulation is done) with the typical boundary conditions:

polyCreateWorld −x $SIZE −y $SIZE −z $SIZE −m1 $MESH # big box=world

Before some lengths are stored in scalar and vectorial variables, e.g.

RAD=0.045 # rad iu s o f boreho l e
DIST=(0.103 0 .152 0 .202 0 .252 0 .302 0 .353 0 . 100 ) # e l e c t r od e d i s t an c e s

At the beginning, we create prototypes of the two different cylinders and shift it such that the
top is zero and they have the correct radius

polyCreateCube −H −Z −s $SEG cy l # c r ea t e ( c l o s ed ) un i t c y l i nd e r
po lyTrans la te −z −0.5 cy l # s h i f t to upper boundary=su r f a c e
po lySca l e −x $RAD −y $RAD cy l # s c a l e to c o r r e c t rad iu s

Since the distances differ, their height will be scaled later, the electrode now

cp cy l . poly e l e c 0 . poly # uni t e l e c t r o d e
po lySca l e −z $DRING e l e c 0 # r i gh t he ight

Each borehole b is constructed at the origin by starting with a cylinder element

cp cylC . poly boreho le . poly # uppermost p i e c e

A variable z holds the current depth and is initialized with the distance to the first electrode,
which is retrieved from the vector PD by using

z=${PD[ $b ]}

After each adding of an element z is increased by adding the individual length using awk

z=‘echo $z $DRING | awk ’{ pr in t $1 + $2 } ’ ‘ # ‘ ‘ # output in z

The standard electrode is copied and translated and an electrode marker $ELM. is associated,
which is later used to identify the CEM electrode (starting from -10000 downwards). Finally
the electrode is merged with the borehole

cp e l e c 0 . poly e l e c . poly #
polyAddVIP −B −m −$ELM e l e c
po lyTrans la te −z −$z e l e c
polyMerge boreho le e l e c boreho l e

Similar is done with the pieces between the electrode, i.e. scale, translate and merge. The
inner loop
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f o r e in {0 . . 6}
do

. . .
done

runs over the electrodes and the outer (b) over the borehole tools. Before merging with the
world, the electrodes are translated to their positions. However, the boreholes are tilted by
a specific angle (also stored the vector ROT). The rotation around the y axis (i.e. y remains
constant) is done by

polyRotate −R −y ${ROT[ $b ]} boreho le # −R fo r rad ( d e f au l t=deg )

The uppermost face (of each of the 6 electrodes) is intersecting the earth’s surface and must
therefore be moved to z=0. Therefore a copy of the borehole poly file is created and the lines
with the points close to the surface are changed accordingly using head and tail commands

head −n1 boreho le . poly > newborehole . poly # keep l i n e 1 , change 2+3
head −n3 boreho le . poly | t a i l −n2 |
awk ’{ pr in t $1 ”\ t ” $2 ”\ t ” $3 ”\ t ” 0 ”\ t ” $5 } ’ >> newborehole . poly
head −n6 boreho le . poly | t a i l −n3 >> newborehole . poly # keep 4−6 e tc .

The problem is that the rectangle side faces of the uppermost segment are not coplanar anymore
due to the movement. One solution could be a more sophisticated positioning. Another way
is to dissect all rectangles into triangles that are coplanar by definition. This is achieved by
transforming the very first piece (the beginner) to the common STL format (that uses triangles)
and then back to POLY using polyConvert:

polyConvert −S boreho le . poly
polyConvert −P boreho l e . s t l

Unfortunately, the hole marker is lost in the STL file, so it must be re-added:

polyAddVIP −H −x 0 −y 0 −z −0.01 boreho l e

Note that all PLCs ca be converted in to VTK (and viewed in ParaView) using

polyConvert −V f i l e . poly

When looking at the PLC, we see that the lower face of the upper piece is dissected, whereas
the upper face of the adjacent electrode at the same position has still 6 nodes. Therefore we
create all the electrode cylinders with the option -O so that the top and bottom faces are
omitted. As a consequence, we have a valid mesh input, which can be meshes using tetgen and
transformed into a BMS/MESH/VTK format files using:

t e tgen −pazVACq1 .15 $MESH # mesh $PLC with qua l i t y =1.2 − mesh . 1 . ∗
meshconvert −vBDMV − i t −o $MESH $MESH.1 # convert to BMS/MESH/VTK

To achieve high accuracy we further transform the mesh to quadratic elements using -p

meshconvert −vBD −p −o ${MESH}P $MESH. bms

Note that if there are meshing errors the problematic zones can be investigated using

t e tgen −d mesh f i l e

and the resulting mesh only contains the mesh dissections or non-coplanar elements. If there
are additional surface electrodes they can be added using polyAddVIP

polyAddVIP −f s u r f a c e e l e c . xyz −m −99 $MESH

66



They should be locally refined to a/10, where a is the electrode distance:

polyRefineVIPS −z −0.015 $MESH

The whole script reads as below.
Now we want to model with the script and investigate the difference to point electrodes. First
we run dcmod with -1 and the scheme file applied

dcmod −v −1 −s d a t a f i l e mesh/meshP . bms # outputs num.ohm

Note that although dcmod tries to find electrodes by their position, there is a priority, first
CEM electrodes and then are searched and then nodes. In cases of close distances between
different types a wrong association may occur resulting in ”free electrodes”. We therefore
recommend to always use CEM before Node and free electrodes by sorting data. Next, we
create a file containing the analytical geometric factor using

dced i t −f ”a b m n k” −o geom . dat d a t a f i l e

Finally we use this file to ”filter” the numerical results with these geometric factors.

dced i t −vSB −c geom . dat −o e l e f f . dat num.ohm

As the modeled R = 1/knum, the resulting ρa = kana ∗R = kana/knum is the electrode effect.
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