
GIMLi –
Geophysical Inversion and Modelling Library

– programmers tutorial

Thomas Günther∗ & Carsten Rücker†

December 13, 2011

GIMLi is a C++ class library for solving inverse and forward problems in geo-
physics. It was build in order to make inversion available to various forward mod-
elling routines. Template programming algorithms are used to create a purely
mathematical framework for solving physics problems. The inversion can apply
various minimisation and regularization schemes, different transformation functions
a region approach for sophisticated regularization and the chance to incorporate
parametric and structural inversion.

In this tutorial we like to show the programmer how to work with GIMLi by
means of different examples. A simple curve-fitting is used to show how different
forward operators can be incorporated. Some small 1d examples demonstrate the
use of different parameterisation and the partitioning of data and model. The
region technique can be used for different target parameters or geological units.

Joining different inversion runs is one of the key issues of ongoing research. We
show three different joint inversion (JI) types: one-parameter JI, petrophysical
JI and structural JI. Finally the time-lapse inversion framework is presented and
applied to ERT data using different algorithms.

∗Leibniz Institute for Applied Geophysics, Hannover (Germany)
†Institute of Geology and Geophysics, University of Leipzig (Germany)

1

Contents

1. Introduction 3
1.1. GIMLi – concept and overview . 3
1.2. Minimisation and regularization methods . 4
1.3. Transformation functions . 5
1.4. Parameterisation and the region technique . 6
1.5. Obtaining and building GIMLi . 6
1.6. Outline of the document . 8

2. A very simple example - polynomial curve fitting 9
2.1. The first program in C++ . 9
2.2. A first Python program . 10
2.3. An own Jacobian . 12

3. General concepts using 1D DC resistivity inversion 13
3.1. Smooth inversion . 13
3.2. Block inversion . 15
3.3. Resolution analysis . 16
3.4. Structural information . 17
3.5. Regions . 18

4. Enhanced techniques 20
4.1. Combining different data types - MT 1d inversion 20
4.2. Combining different parameter types - offsets in travel time 21
4.3. What else? . 23

5. Joint inversion 24
5.1. Classical joint inversion of DC and EM soundings 24
5.2. Block joint inversion of DC/MRS data . 25
5.3. Structurally coupled cooperative inversion of DC and MRS soundings 27
5.4. Petrophysical joint inversion . 29

6. Inversion templates 30
6.1. Roll-along inversion . 30
6.2. Joint inversion . 30
6.3. Time lapse inversion . 31

A. Inversion properties 32

B. Mesh types and mesh generation 33

C. Region properties and region map file 35

D. Transformation functions 37

E. Vectors and Matrix types 38
E.1. Block-Matrices . 38

2

1. Introduction

1.1. GIMLi – concept and overview

In geophysics, various physical processes and fields are used to gain information about the
subsurface parameters. The fields and processes can be very well studied and understood
by simulation assuming a parameter distribution. This so-called forward task can be done
by using analytical formulae and numerical integration, or numerical schemes deploying finite
difference or finite element techniques. In the recent years, very different studies have been
presented that open up new methods to be used.
However, in almost all approaches the task is finally to derive subsurface parameters, i.e. the
inverse problem has to be solved. Very often this is ill-posed, i.e. a variety of solutions is
fitting the data within error bounds. Hence regularization methods have to be applied. There
exist numerous inversion and regularization schemes, which do not have to be reinvented.
Furthermore, often a resolution analysis is required in order to appraise the quality of the
results. The idea of GIMLi is to present a very flexible framework for geophysical inversion
and modelling such that it can be used from any forward operator. All problems such as
optimization of regularization parameters, line search are solved generally. The GIMLi library
is structured into four layers (Fig. 1) that are based on each other:

The basic layer holds fundamental algebraic methods and mesh containers for model param-
eterisation

The modelling®ion layer administrates the modelling classes that are based on a basis
class and the connection to constraints and transform functions

The inversion layer is a template class for minimisation with different methods, inverse solvers,
line search, λ optimisation and resolution analysis

In Inversion frameworks sophisticated techniques are formulated, e.g. time-lapse strategies,
roll-along inversion or different kinds of joint inversion

GIMLi
Inversion frameworks
● Timelapse, Roll-along, Joint-Inversion

Basic inversion

Modelling
class Regions Constraints

Transformation functions

Core layer
● Algebra (Sparsematrix, Metasolver, CGLS, …)
● Meshcontainer (Un-/Structured, 1/2/3 D, ...)

Applications
● BERT
● DC/EM 1D
● TDR 1D
● TTInv
● DC-Ra-Joint
● ...

Externals

● Forward operators
 response

 (jacobian/gradient)

● Mesher
● Solver

Figure 1: Scheme of the GIMLi library, applications and externals

External programs are, e.g., mesh generators and solvers for linear systems. For generating
quality constrained irregular 2d and 3d meshes, we usually use Triangle (Shewchuk, 1996)
and TetGen (Si, 2003). For solving linear systems we recommend the open-source collection

3

SuiteSparse (Davis, 2006), which contains multi-frontal direct&iterative solvers as well as
reordering algorithms.
External forward operators can be easily linked against GIMLi. As soon they meet the re-
quirements, the inversion can be setup and run with 2 lines.

1.2. Minimisation and regularization methods

Assume we have a discrete number of data di assembled in a data vector d = [d1, . . . , dD]T . We
want to find a parameter distribution represented by a discrete model vector m = [m1, . . . ,mM]T

such that the forwad response f(m) approximates d. To each datum a variance δdi is associ-
ated. By weighting the individual misfit fi − di with δdi we obtain a unit-less misfit vector,
such that different data are combined easily.
We try to minimise the misfit vector in a least squares sense using the objective function

Φd =
∑
i=1

D

∣∣∣∣di − fi(m)

δdi

∣∣∣∣2 =
∥∥D(d− f(m))

∥∥2
2
→ min with D = diag(δd−1i) . (1)

More generally, the inverse data covariance matrix W−1
d can be used instead of D if the

variances are correlated. Since the problem is usually non-unique, regularization has to be
applied. We concentrate on explicit and global regularization (CITE) and use a generalized
matrix formulation (CITE) to obtain a model objective function

Φm = ‖WcCWm(m−mR)‖22 . (2)

mR represents a reference model. The matrix C is a derivative matrix or an identity matrix or a
mixture of it. In the first neighboring relations are taken into account (smoothness constraints),
whereas in the latter (zeroth order smoothness) they are not. The assumption of a smooth
model is often the only choice to cope with ill-posedness and limited resolution. However the
degree of smoothness can be controlled flexibly with the mostly diagonal weighting matrices
Wb = diag(wb

i) and Wm = diag(wm
i). A derivative matrix consists of C rows or constraint

equations constraining the M model cells corresponding to the rows. By choosing the wm
i each

model cell can be weighted individually such that a varying degree of smoothness or vicinity to
the reference model can be achieved. Doing so, parameter constraints are applied using cell-
dependent regularization. On the contrary, we are able to incorporate structural constraints by
setting the the weights wc

i for the individual model boundaries. For example, we can allow for
arbitrary contrasts along a known boundary (e.g. from seismics or boreholes) in an otherwise
smooth model (CITE).
Finally, a regularization parameter λ is used to weight Φd and Φm so that we minimize

Φ = Φd + λΦm =
∥∥D(d− f(m))

∥∥2
2

+ λ
∥∥WcCWm(m−mR)

∥∥2
2
→ min . (3)

Although the wi are already regularization parameters it is easier to use relative wi and op-
timized only the one external λ. In the knowledge of the variances, λ has to be chosen such
that the data are fitted within their variances in a least squares sense. The inversion task can
then be posed as

min
m

Φm subject to χ2 = Φd/N = 1 ,

which yields the same result as equation 3 for appropriate λ.

4

There are different methods for minimisation. The most popular one is a Gauss-Newton
scheme since it has a fast convergence. However it requires the computation of the jacobian or
sensitivity matrix with the elements Jij = ∂fi(m)

∂mj
. Some physical problems allow for efficient

sensitivity approximation. For small-scaled problems with fast forward operators it can be
approximated by (brute force) variation of the mj and a forward calculation.
In Gauss-Newton inversion, a big equation system consisting of the matrices above is solved
for the model update. However, the left-hand side is not built up. Instead the equation is
solved by conjugate-gradient based solvers that incorporate all matrices and vectors.
Alternative methods that do not need the storage of the are gradient-based. The gradient

g(m) =

[
∂Φ

∂m1
,
∂Φ

∂m2
, . . .

∂Φ

∂mM

]T
splits up in the model gradient and data gradient. The latter can be computed for some
methods using adjoint field methods. Otherwise it can be computed by the perturbation
method as well.
The easiest method is the steepest descent method where the model update is sought in the
negative gradient. A more sophisticated and faster converging method is called nonlinear
conjugate gradients (NLCG), where the preceding gradients are taken into account. A hy-
brid method between gradient and Gauss-Newton method is the quasi-Newton method. It
successively stores the projections of the gradient directions and approximates the jacobian
step-wise. Thus it starts with the linear convergence of gradient methods but ends up with
quadratic Gauss-Newton convergence without storage of the jacobian matrix. This method is
particularly interesting for higher-dimensional problems (Haber, 2005).
For all methods, an update ∆mk+1 of the current model mk is obtained. The model is updated
using a step length τk+1 such that equation 3 is minimized. The latter is called line search
and can be done exact, by interpolation of the fi(m

k + ∆mk+1) or by forward calculation of
three step lengths and fitting a parabola.

Forward operator requirement

A forward operator is defined by a C++ class object derived from a base forward operator
class ModellingBase. The only necessary function is called response, and it returns a forward
response vector for a given model vector. Once an instance f of class has been defined, the
forward response for the model vector model is called by f.response(model) or, more briefly,
f(model).

1.3. Transformation functions

The forward problem is usually posed based on some intrinsic properties and measurements, e.g.
the measured voltage is based on conductivity. However, we often want to use d and m values
different from that, e.g. apparent resistivity and logarithm of resistivity. Motivation for that
may be a better-posed system, additional constraints such as positivity or the incorporation
of petrophysical constraints (Tarantola, 2001; Günther et al., 2008).
In any GIMLi application we can choose arbitrary transformation functions in any stage of
the inversion. The inversion itself is using template classes such that the transformations are
carried out on the fly. The choice affects model and data vector, but also data weighting and of
course the gradient and jacobian. However the jacobian or gradient of the transformed inverse

5

problem are never explicit formed, instead they are incorporated into the inverse sub-problem
by using derivatives.
A transformation m̂(m) needs three things: the transformation from m to m̂ and back, and
the derivative of m̂ with respect to m. A number of useful transformation is already available.
Others can be easily created or derived by combination of existing ones. See appendix D for
details.

1.4. Parameterisation and the region technique

The discrete model parameters mi can be freely defined (without spatial association - 0d) or be
coefficients for a given model parameterisation (1d, 2d, 3d or 4d) or a mixture of it. A spatial
parameterisaton is represented by a mesh containing the neighboring relations. Figure 2 shows
different basic parameterisations. This can be structured (e.g. a finite difference discretisaton)
or unstructured arranged by triangles or tetrahedra. There are various functions for mesh
generation, export and import, see appendix B.

0 10 20 30 40
7
6
5
4
3
2
1

0 10 20 30 40
7
6
5
4
3
2
1
0

20 0 20 40 60

25

20

15

10

5

0

Figure 2: Different parameterisations: 0d (independent parameters), 1d mesh, 2d structured
mesh (grid), 2d unstructured mesh, 2d mixed mesh, 3d mesh

A combination of different data is easily achieved by the described error weighting and com-
bining two vectors, e.g. amplitude and phase data in MT, in one vector. Different parameters,
can similarly be treated by different parts of the model vector, so-called regions. Regions can
be, as the name states, parts of one mesh representing different geological units. Regions can
also be different parameters on the same mesh (e.g. porosity and saturation) or on different
parametrisations, e.g. a 2d/3d resistivity distribution and (0d) values for static shift in MT
inversion.
In inversion the regions are by default independent from each other, but can as well be con-
strained to another. For each region the starting model value, but also constraint type, model
and constraint control and the used transformation function can be freely defined. Special
regions are a background region (not part of inversion) and a single-parameter region (all cells
a compounded to one parameter). See appendix C for how to control the behaviour of regions.

1.5. Obtaining and building GIMLi

Since summer 2011, GIMLi is hosted on SourceForge under the project name libgimli1. See
http://sourceforge.net/projects/libgimli/ for additional information such as binary

1Note that since this change the BERT components were excluded from the project to a dedicated repository.

6

http://sourceforge.net/projects/libgimli/

downloads, documentation, bug tracker and feature request. The code itself can be retrieved us-
ing subversion (SVN) using the address https://libgimli.svn.sourceforge.net/svnroot/
libgimli. As usual the code contains a current development (trunk), experimental changes
or side-projects (branches) and stable versions (tags).
The main code is located under src and applications in different sub-folders under apps. Under
doc you will find Doxygen documentation and this tutorial including its code examples. To
build the binaries, the GNU build system (Autotools) is used: first, the script autogen.sh runs
the GNU autotools including configure and make runs the compilation. The configuration
tries to detect the necessary libraries, i.e.

• LAPACK (Linear algebra package) and BLAS (basic linear algebra subprograms), see
www.netlib.org

• Boost C++ libraries (boost.org), we use multithreading and python bindings

• SuiteSparse for solving sparse matrix systems (http://www.cise.ufl.edu/research/
sparse/SuiteSparse/), we use Cholmod for symmetric matrices

Whereas LAPACK/BLAS and Boost can be made system-wide available on Linux systems
using a package manager, SuiteSparse must be downloaded and built by hand. In the folder
external there is a Makefile that tries to download and build LAPACK, BLAS and SuiteS-
parse. All libraries should be located in external/lib, On Windows systems, you can use
ready-compiled dll files.
For reasons of platform-compatibility, our codes are adapted to the GNU compilers but should
be working with any compiler suite. Whereas the GNU compiler collection is installed on any
Linux or Mac system, on Windows MinGW (Minimalistic GNU for Windows, www.mingw.org)
should be installed first. For Windows we also recommend to use CodeBlocks as compiler IDE
for which we prepared project files (**.cbp) in the folder mingw.

PyGIMLi

Python (www.python.org) is a very powerful and easy-to-use programming language that
combines the performance of numerical computation with high-end graphical output and user-
interfaces. We recommend PythonXY (www.pythonxy.com), a distribution coming along with
a lot of modules for scientific computing and development environments such as Spyder. The
Python bindings for GIMLi, PyGIMLi, are located in the subfolder python make it very
comfortable to write GIMLi applications. In the folder python you find a build script build.sh
to build the binaries2 as well as numerous other functions that can be used from python.

Installation

Independent whether you use pre-compiled or self-build binaries the path to the executables,
libraries and python modules must be known using the variables PATH, LD LIBRARY PATH3

and PYTHONPATH.

2The packages gccxml, pygccxml and pyplusplus are needen, but can also be retrieved using buildToolChain.sh

in the folder buildScripts.sh
3Under windows there is no differentiation and PATH is for both.

7

https://libgimli.svn.sourceforge.net/svnroot/libgimli
https://libgimli.svn.sourceforge.net/svnroot/libgimli
www.netlib.org
boost.org
http://www.cise.ufl.edu/research/sparse/SuiteSparse/
http://www.cise.ufl.edu/research/sparse/SuiteSparse/
www.mingw.org
www.python.org
www.pythonxy.com

1.6. Outline of the document

In the following chapters we like to document how to work with the library using different
examples. A very simple example will illustrate how to setup a forward class and make the
first inversion - polynomial curve fitting. Then, some basic geophysical examples explain how
parameterisations are used and options are set. Three different joint inversion techniques are
explained in the section 5. The last section deals with the subject time-lapse inversion. In the
directory code there are the code examples used in the following.

8

2. A very simple example - polynomial curve fitting

2.1. The first program in C++

Example file polyfit0.cpp in the directory doc/tutorial/code/polyfit.
Let us start with the very simple inverse problem of fitting a polynomial curve of degree P

f(x) = p0 + p1x+ . . .+ pPx
P =

P∑
i=0

pix
i

to some existing data y. The unknown model is the coefficient vector m = [p0, . . . , pP]. The
vectorized function for a vector x = [x1, . . . ,xN]T can be written as matrix-vector product

f(x) = Ax with A =

 1 x1 . . . xP1
...

...
. . .

...
1 xN . . . xPN

 = [1 x x2 . . .xP] . (4)

We set up the modelling operator, i.e. to return f(x) for given pi, as a class derived from the
modelling base class. The latter holds the main mimic of generating jacobian, gradients by
brute force. The only function to overwrite is response().

c l a s s F u n c t i o n M o d e l l i n g : p u b l i c ModellingBase {
p u b l i c :

/∗ ! c o n s t r u c t o r , nc : number o f c o e f f i c i e n t s , xvec : a b s c i s s a e ∗/
F u n c t i o n M o d e l l i n g (i n t nc , const RVector & xvec , bool v e r b o s e=f a l s e)

: ModellingBase (v e r b o s e) , x (xvec) , nc (nc){
reg ionManager −>se tP ar am et e rC ou nt (nc) ; // ! i n s t e a d o f a mesh

}
/∗ ! th e main t h i n g − th e f o r w a r d o p e r a t o r : r e t u r n s f (x) ∗/
RVector r e s p o n s e (const RVector & par){

RVector y (x . s i z e () , par [0]) ; // ! c o n s t a n t v e c t o r o f p0
f o r (s i z e t i = 1 ; i < n c ; i ++) // ! p1 to pP

y += pow (x , i) ∗ par [i] ; // ! add p i ∗xˆ i
return y ; // ! r e t u r n sum

}
/∗ ! d e f i n e t he s t a r t m o d e l ∗/
RVector s t a r t M o d e l (){ return RVector (nc , 0 . 5) ; }

protected :
RVector x ; // ! a b s c i s s a v e c t o r x
i n t n c ; // ! number o f c o e f f i c i e n t s

} ;

In the constructor the x vector and the number of coefficients are saved as protected variables4.
The function setParameterCount setups the parameterisation as a 0d mesh of nc unknowns.
The main type used is RVector, a vector of real (double) values.
We now want to apply the function to the real inversion of data and write a main program.

i n t main (i n t argc , char ∗ a r g v []){
i n t np = 1 ; /∗ ! maximum p o l y n o m i a l d e g r e e f i x e d to 1 ∗/

4Usually all variables are denoted with an underscore and declared as protected. Instead of accessing the values
directly, we use set and get functions that control the validity of the arguments.

9

RMatrix xy ; // ! two−column m a t r i x from f i l e h o l d i n g x and y
l o a d M a t r i x C o l (xy , ” d a t a f i l e . dat ”) ;
/∗ ! i n i t i a l i s e m o d e l l i n g o p e r a t o r ∗/
F u n c t i o n M o d e l l i n g f (np + 1 , xy [0]) ; // ! f i r s t data column
/∗ ! i n i t i a l i s e i n v e r s i o n w i t h data and f o r w a r d o p e r a t o r ∗/
RInvers ion i n v (xy [1] , f) ;

/∗ ! th e problem i s w e l l−posed and does not need r e g u l a r i z a t i o n ∗/
i n v . setLambda (0) ;
/∗ ! a c t u a l i n v e r s i o n run y i e l d i n g c o e f f i c i e n t model ∗/
RVector c o e f f (i n v . run ()) ;
/∗ ! s a v e c o e f f i c i e n t v e c t o r to f i l e ∗/
s a v e (c o e f f , ” out . vec ”) ;
/∗ ! e x i t programm l e g a l l y ∗/
return EXIT SUCCESS ;

}

The data in the two-column data file is read into a real matrix (RMatrix xy;) whose columns
can be assessed by xy[i]. We initialise the forward class as defined and the inversion by
specifying data and forward operator. Then any options of the inversion can be set, such as
the regularization parameter being zero.
Instead of using a fixed polynomial degree and a pre-defined file name we might specify this
by the command line in order to have a user-friendly tool. For this, an option map is applied
reading the last argument and the optionally defined -n switch.

i n t np = 1 ;
s t d : : s t r i n g d a t a f i l e ;
OptionMap oMap ;
oMap . s e t D e s c r i p t i o n (” P o l y f i t − f i t s two−column data w i t h p o l y n o m i a l s ”) ;
oMap . addLastArg (d a t a f i l e , ” D a t a f i l e ”) ;
oMap . add (np , ”n : ” , ”np” , ”Number o f p o l y n o m i a l s ”) ;
oMap . p a r s e (argc , a r g v) ;
RMatrix xy ;
loadMatrixCol (xy , d a t a f i l e) ;

The provided datafile y_2.1x+1.1.dat holds synthetic noisified data for a linear function. A
call curvefit -n1 y_2.1x+1.1.dat yields values close to the synthetic ones.

2.2. A first Python program

Example file polyfit.py in the directory doc/tutorial/code/polyfit.
Python is a very flexible language for programming and scripting and has many packages for
numerical computing and graphical visualization. For this reason, we built Python bindings
and compiled the library pygimli. As a main advantage, all classes can be used and derived.
This makes the use of GIMLi very easy for non-programmers. All existing modelling classes
can be used, but it is also easy to create new modelling classes.
We exemplify this by the preceding example. First, the library must be imported. To avoid
name clashes with other libraries we suggest to import it to an easy name, e.g. by using
import pygimli as g. As a result, all gimli objects (classes and functions) can be referred to with
a preceding g., e.g. g.RVector is the real vector RVector. Next, the modelling class is derived
from ModellingBase, a constructor is defined and the response function is defined.

10

import p y g i m l i as g
c l a s s F u n c t i o n M o d e l l i n g (g . M o d e l l i n g B a s e) :

c o n s t r u c t o r
def i n i t (s e l f , nc , xvec , v e r b o s e = F a l s e) :

g . M o d e l l i n g B a s e . i n i t (s e l f , v e r b o s e)
s e l f . x = xvec
s e l f . n c = nc
s e l f . r eg ionManager () . se tP ara me te rC ou nt (nc)

r e s p o n s e f u n c t i o n
def r e s p o n s e (s e l f , par) :

y = g . RVector (s e l f . x . s i z e () , par [0])
f o r i i n ra ng e (1 , s e l f . n c + 1) :

y += g . pow (s e l f . x , i) ∗ par [i] ;
return y ;

s t a r t model
def s t a r t M o d e l (s e l f) :

return g . RVector (s e l f . nc , 0 . 5)

The pygimli library must once be imported (in this case under the name g) and all classes (e.g.
modelling operators) can be used by g.classname, e.g. g.RVector is the already known vector
of real values.
The main program is very easy then and the code is very similar to C++. Data are loaded,
both forward operator and inversion are created. Inversion options are set and it the result of
run is save to a file. That’s it.

xy = g . RMatr ix ()
g . l o a d M a t r i x C o l (xy , d a t a f i l e) ;
two c o e f f i c i e n t s and x−v e c t o r (f i r s t data column)
f = F u n c t i o n M o d e l l i n g (o p t i o n s . np + 1 , xy [0])

i n i t i a l i z e i n v e r s i o n w i t h data and f o r w a r d o p e r a t o r and s e t o p t i o n s
i n v = g . R I n v e r s i o n (xy [1] , f) ;

c o n s t a n t a b s o l u t e e r r o r o f 0 . 0 1 (not n e c e s s a r y , o n l y f o r c h i ˆ2)
i n v . s e t A b s o l u t e E r r o r (0 . 0 1) ;

th e problem i s w e l l−posed and does not need r e g u l a r i z a t i o n
i n v . setLambda (0) ;

a c t u a l i n v e r s i o n run y i e l d i n g c o e f f i c i e n t model
c o e f f = i n v . run () ;
g . s a v e (c o e f f , ” out . vec ”) ;

As a main advantage of Python, the actual computations can be easily combined with post-
processing or visualization, even building graphical user-interfaces. In this code example we
use matplotlib, a plotting library inside of pylab, which is comparable to MatLab.

import p y l a b as P
P . p l o t (xy [0] , xy [1] , ’ r x ’ , xy [0] , i n v . r e s p o n s e () , ’ b− ’)
P . show ()

Similar to C++, command line options can be parsed using the class OptionParser, see the
code file. The output is illustrated for two a synthetic function y = 2.1x + 1.1 noisified with
Gaussian noise for two different orders in Figure 3.
In the following we continue the description with C++ but all are provided as well in Python
without significant code changes.

11

0 2 4 6 8 10
x

0

5

10

15

20

25
y

y = 1.094 + 2.191 x^1

measured
fitted

0 2 4 6 8 10
x

0

5

10

15

20

25

y

y = 2.642 + 0.077 x^1 + 0.514 x^2 + -0.033 x^3

measured
fitted

Figure 3: Polynomial fit for noisified synthetic data using first order (left) and third order
(right) polynomials.

2.3. An own Jacobian

Example file polyfit1.cpp in the directory doc/tutorial/code/polyfit.
For the latter example, the underlying Gauss-Newton scheme creates a Jacobian matrix by
brute force (perturbation). If we want to apply an own algorithm we overwrite the function
createJacobian() in the modelling class by using the matrix A from (4):

void c r e a t e J a c o b i a n (RMatrix & j a c o b i a n , const RVector & model) {
j a c o b i a n . r e s i z e (x . s i z e () , n c) ;
f o r (s i z e t i = 0 ; i < n c ; i++)

f o r (s i z e t j = 0 ; j < x . s i z e () ; j++)
j a c o b i a n [j] [i] = pow (x [j] , i) ;

}

The result of the inversion is of course the same as before. Note that the resize function checks
for the right size and allocates space if necessary.
Alternatively we might to use other minimisation methods even though it is not necessary for
this example. (Steepest descent, NLCG, Quasi-Newton)
Note that RInversion is an instance of the template class Inversion< ValueType, MatrixType >

with the value type double and the matrix type RMatrix5. One can, of course, use other types,
e.g. the complex vector/matrix CVector/CMatrix. For many problems the jacobian matrix has
only few entries and can be approximated by a sparse matrix. Therefore the matrix type
RSparseMapMatrix exists, which is itself an instance of a template type with long int index and
double values. The corresponding inversion is called RInversionSparse.

5RMatrix is a full matrix of real (double) values.

12

3. General concepts using 1D DC resistivity inversion

See cpp/py files in the directory doc/tutorial/code/dc1d.

3.1. Smooth inversion

Example file dc1dsmooth.cpp.
Part of the GIMLi library are several electromagnetic 1d forward operators. For direct current
resistivity there is a semi-analytical solution using infinite sums that are approximated by
Ghosh filters. The resulting function calculates the apparent resistivity of any array for a
given resistivity and thickness vector. There are two main parameterisation types:

• a fixed parameterisation where only the parameters are varied

• a variable parameterisation where parameters and geometry is varied

Although for 1d problems the latter is the typical one (resistivity and thickness), we start with
the first since it is more general for 2d/3d problems and actually easier. Accordingly, in the
file dc1dmodelling.h/cpp two classes called DC1dRhoModelling and DC1dBlockModelling are
defined. For the first we first define a thickness vector and create a mesh using the function
createMesh1d. The the forward operator is initialized with the data.

RMatr ix abmnr ; l o a d M a t r i x C o l (abmnr , d a t a F i l e) ; // ! r e a d data
RVector ab2 = abmnr [0] , mn2 = abmnr [1] , rhoa = abmnr [2] ; // ! 3 columns
RVector thk (n lay −1, max (ab2) / 2 / (n l a y − 1)) ; // ! c o n s t . t h i c k n .
DC1dRhoModell ing f (thk , ab2 , mn2) ; // ! i n i t i a l i s e f o r w a r d o p e r a t o r

Note that the mesh generation can also be done automatically using another constructor.
However most applications will read or create a mesh from in application and pass it.
By default, the transformations for data and model are identity transformations. We initialise
two logarithmic transformations for the resistivity and the apparent resistivity by

RTransLog t ransRho ;
RTransLog t ransRhoa ;

Alternatively, we could set lower/upper bounds for the resistivity using

RTransLogLU transRho (lowerbound , upperbound) ;

Appendix D gives an overview on available transformation functions.
Next, the inversion is initialized and a few options are set

R I n v e r s i o n i n v (data . rhoa () , f , v e r b o s e) ;
i n v . s e t T r a n s D a t a (t ransRhoa) ; // ! data t r a n s f o r m
i n v . se tTransMode l (t ransRho) ; // ! model t r a n s f o r m
i n v . s e t R e l a t i v e E r r o r (e r r P e r c / 1 0 0 . 0) ; // ! c o n s t a n t r e l a t i v e e r r o r

A starting model of constant values (median apparent resistivity) is defined

RVector model (n lay , median (data . rhoa ())) ; // ! c o n s t a n t v e c t o r
i n v . setMode l (model) ; // ! s t a r t i n g model

13

Finally, the inversion is called and the model is retrieved using model = inv.run();

A very important parameter is the regularisation parameter λ that controls the strength of the
smoothness constraints (which are the default constraint for any 1d/2d/3d mesh). Whereas
wc and wm are dimensionless and 1 by default, λ has, after eq. (3), the reciprocal and squared
unit of m and can thus have completely different values for different problems6. However, since
often the logarithmic transform is used, the default value of λ = 20 is often a first guess. Other
values are set by

i n v . setLambda (lambda) ; // ! s e t r e g u l a r i s a t i o n pa ram et e r

In order to optimise λ, the L-curve (Günther et al., 2006; Günther, 2004) can be applied to
find a trade-off between data fit and model roughness by setting inv .setOptimizeLambda(true);.
For synthetic data or field data with well-known errors we can also call model = inv.runChi1();,
which varies λ from the starting value such that the data are fitted within noise (χ2 = 1).
We created a synthetic model with resistivities of 100(soil)-500(unsaturated)-20(saturated)-
1000(bedrock) Ωm and thicknesses of 0.5, 3.5 and 6 meters. A Schlumberger sounding with
AB/2 spacings from 1.0 to 100 m was simulated and 3% noise were added. Data format of the
file sond1-100.dat is the unified data format7.

10 100 1000

0

2

4

6

8

10

12

14

16

18

z
in

 m

ρ in Ωm
10 100 1000

0

2

4

6

8

10

12

14

16

18

z
in

 m

ρ in Ωm
10 100 1000

0

2

4

6

8

10

12

14

16

18

z
in

 m

ρ in Ωma b c

Figure 4: Smooth 1d resistivity inversion results for a) λ = 200⇒ χ2 = 11.1/rrms=10.1%, b)
λ = 20⇒ χ2 = 1.2/rrms=3.3%, and c) λ = 2⇒ χ2 = 0.6/rrms=2.4%, red-synthetic
model, blue-estimated model

Figure 4 shows the inversion result for the three different regularisation parameters 300, 30 and
3. Whereas the first is over-smoothed, the other are much closer at the reality. The rightmost
figure over-fits the data (χ2 = 0.3 < 1) but is still acceptable. The L-curve method yields a

6The regularisation parameter has therefore to be treated logarithmically.
7See www.resistivity.net?unidata for a description.

14

www.resistivity.net?unidata

value of λ = 2.7, which is too low. However, if we apply the χ2-optimization we obtain a value
of λ = 15.2 and with it the data are neither over- nor under-fitted.

3.2. Block inversion

Example file dc1dblock.cpp in the directory doc/tutorial/code/dc1d.
Alternatively, we might invert for a block model with unknown layer thickness and resistivity.
We change the mesh generation accordingly and use the forward operator DC1dModelling:

DC1dModel l ing f (n lay , ab2 , mn2) ;

createMesh1DBlock creates a block model with two regions8. Region 0 contains the thickness
vector and region 1 contains the resistivity vector. There is a region manager as a part of the
forward modelling class that administrates the regions. We first define different transformation
functions for thickness and resistivity and associate it to the individual regions.

RTransLog transThk ;
RTransLogLU transRho (lbound , ubound) ;
RTransLog t ransRhoa ;
f . r e g i o n (0)−>setTransMode l (t ransThk) ;
f . r e g i o n (1)−>setTransMode l (t ransRho) ;

For block discretisations, the starting model can have a great influence on the results. We
choose the median of the apparent resistivities and a constant thickness derived from the
current spread as starting values.

double paraDepth = max (ab2) / 3 ;
f . r e g i o n (0)−> s e t S t a r t V a l u e (paraDepth / n l a y / 2 . 0) ;
f . r e g i o n (1)−> s e t S t a r t V a l u e (median (rhoa)) ;

For block inversion a scheme after Marquardt (1963), i.e. a local damping of the changing with-
out interaction of the model parameters and a decreasing regularisation strength is favourable.

i n v . setMarquardtScheme (0 . 9) ; // ! l o c a l damping w i t h d e c r e a s i n g lambda

The latter could also be achieved by

1. setting the constraint type to zero (damping) by inv . setConstraintType(0)

2. switching to local regularization by inv . setLocalRecularization (true)

3. defining the lambda decreasing factor by inv .setLambdaDecrease(0.9)

With the default regularization strength λ = 20 we obtain a data fit slightly below the error
estimate. The model (Fig. 5a) clearly shows the four layers (blue) close to the synthetic model
(red).

8With a second argument createMesh1DBlock can create a block model with thickness and several parameters
for a multi-parameter block inversion.

15

10 100 1000

0

5

10

15

z
in

 m

ρ in Ωm

d
1

d
1

d
2

d
2

d
3

d
3

ρ
1

ρ
1

ρ
2

ρ
2

ρ
3

ρ
3

ρ
4

ρ
4

0.78

0.59

0.49

0.95

0.68

0.55

0.54

−1 −0.5 0 0.5 1

a b

Figure 5: a) Block 1d resistivity inversion result (red-synthetic model, blue-estimated model))
and b) resolution matrix

3.3. Resolution analysis

One may now be interested in the resolution properties of the individual model parameters.
The resolution matrix RM defines the projection of the real model onto the estimated model:

mest = RMmtrue + (I−RM)mR + S†Dn , (5)

(Günther, 2004) where S†Dn represents the generalised inverse applied to the noise. Note that
mR changes to mk for local regularisation schemes (Friedel, 2003).
Günther (2004) also showed that the model cell resolution (discrete point spread function)
can be computed by solving an inverse sub-problem with the corresponding sensitivity distri-
bution instead of the data misfit. This is implemented in the inversion class by the function
modelCellResolution(iModel) where iModel is the number of the model cell. This approach is
feasible for bigger higher-dimensional problems and avoids the computation of the whole res-
olution matrix. A computation for representative model cells can thus give insight of the
resolution properties of different parts of the model.
For the block model we successively compute the whole resolution matrix.

RVector r e s o l u t i o n (nModel) ; // ! c r e a t e s i n g l e r e s o l u t i o n v e c t o r
RMatrix resM ; // ! c r e a t e empty m a t r i x
f o r (s i z e t iMode l = 0 ; iMode l < nModel ; iMode l++) {

r e s o l u t i o n = i n v . m o d e l C e l l R e s o l u t i o n (iMode l) ;
resM . push back (r e s o l u t i o n) ; // ! push back t he s i n g l e v e c t o r

}
s a v e (resM , ” resM ”) ; // ! s a v e r e s o l u t i o n m a t r i x

In Figure 5 the model resolution matrix is shown and the diagonal elements are denoted.
The diagonal elements show that the resolution decreases with depth. The first resistivity is
resolved nearly perfect, whereas the other parameters show deviations from 1. ρ2 is positively
connected with d2, i.e. an increase of resistivity can be compensated by an increased resistivity.
For ρ3 and d3 the correlation is negative. These are the well known H- and T-equivalences of

16

thin resistors or conductors, respectively, and show the equivalence of possible models that are
able to fit the data within noise.

3.4. Structural information

Example file dc1dsmooth-struct.cpp in the directory doc/tutorial/code/dc1d.
Assume we know the ground water table at 4 m from a well. Although we know nothing about
the parameters, this structural information should be incorporated into the model. We create
a thickness vector of constant 0.5 m. The first 8 model cells are located above the water table,
so the 8th boundary contains the known information. Therefore we set a marker different from
zero (default) after creating the mesh

// ! v a r i a n t 1 : s e t mesh (r e g i o n) marker
f . mesh()−>boundary (8) . s e t M a r k e r (1) ;

This causes the boundary between layer 8 and 9 being disregarded, the corresponding wc
8 is

zero and allows for arbitrary jumps in the otherwise smoothed model. Figure 6 shows the
result, at 4 m the resistivity jumps from a few hundreds down to almost 10.

10 100 1000

0

2

4

6

8

10

12

14

16

z
in

 m

ρ in Ωm

Figure 6: Inversion result with the ground water table at 4 m as structural constraint.

Note that we can set the weight to zero also directly, either as a property of the inversion

// ! v a r i a n t 2 : a p p l i c a t i o n o f a c o n s t r a i n t w e i g h t v e c t o r to i n v e r s i o n
RVector bc (i n v . c o n s t r a i n t s C o u n t () , 1 . 0) ;
bc [6] = 0 . 0 ;
i n v . setCWeight (bc) ;

or the (only existing) region.

// ! v a r i a n t 3 : a p p l i c a t i o n o f a boundary c o n t r o l v e c t o r to r e g i o n
RVector bc (f . reg ionManager () . c o n s t r a i n t C o u n t () , 1 . 0) ;
bc [7] = 0 . 0 ;
f . r e g i o n (0)−> s e t C o n s t r a i n t s W e i g h t (bc) ;

17

Of course, in 2d/3d inverse problems we do not set the weight by hand. Instead, we put an
additional polygon (2d) or surface (3d) with a marker 6= 0 into the PLC before the mesh
generation. By doing so, arbitrary boundaries can be incorporated as known boundaries.

3.5. Regions

Example file dc1dsmooth-region.cpp in the directory doc/tutorial/code/dc1d.
In the latter sections we already used regions. A default mesh contains a region with number
0. A block mesh contains a region 0 for the thickness values and regions counting up from
1 for the individual parameters. Higher dimensional meshes can be created automatically by
using region markers, e.g. for specifying different geological units.
In our case we can divide part above and a part below water level. In 2d or 3d we would,
similar to the constraints above, just put a region marker 6= 0 into the PLC and the mesh
generator will automatically associate this attribute to all cells in the region.
Here we set the markers of the cells ≥ 8 to the region marker 1.

Mesh ∗ mesh = f . mesh () ;
mesh−>boundary (8) . s e t M a r k e r (1) ;
f o r (s i z e t i = 8 ; i < mesh−>c e l l C o u n t () ; i++)

mesh−>c e l l (i) . s e t M a r k e r (1) ;

Now we have two regions that are decoupled automatically. The inversion result is identical to
the one in Figure 6. However we can now define the properties of each region individually. For
instance, we might know the resistivities to lie between 80 and 800 Ωm above and between 10
and 100 Ωm below. Consequently we define two transformations and apply it to the regions.

RTransLogLU transRho0 (80 , 800) ;
RTransLogLU transRho1 (10 , 1000) ;
f . r e g i o n (0)−>setTransMode l (t ransRho0) ;
f . r e g i o n (1)−>setTransMode l (t ransRho1) ;

Additionally we might try to improve the very smooth transition between groundwater and
bedrock. We decrease the model control (strength of smoothness) in the lower region by a
factor of 10.

f . r e g i o n (1)−>s e t M o d e l C o n t r o l (0 . 1) ;

The result is shown in Figure 7. The resistivity values are much better due to adding infor-
mation about the valid ranges. Furthermore the transition zone in the lower region is clear.

18

10 100 1000

0

2

4

6

8

10

12

14

16

z
in

 m

ρ in Ωm

Figure 7: Inversion result using two regions of individual range constraint transformations and
regularization strength (model control).

19

4. Enhanced techniques

4.1. Combining different data types - MT 1d inversion

File doc/tutorial/code/enhanced/mt1dinv0.cpp

In magnetotelluric (MT) inversion for every period an amplitude ρa and a phase φ is computed
from the electric and magnetic registrations. The file 1000 100 1000 n5 1.dat contains a
synthetic three layer case of 1000Ωm-100Ωm-1000Ωm with 5 % Gaussian noise on the ρa and
1 degree on the phases. The three columns T , ρa and φ are read extracted as vectors by

RMatrix TRP ; // ! r e a l m a t r i x w i t h p e r i o d (T) , r e s i s t i v i t y (R) & phase (P)
l o a d M a t r i x C o l (TRP, dataFi leName) ; // ! r e a d column−based f i l e
s i z e t nP = TRP . rows () ; // ! number o f data
RVector T(TRP [0]) , rhoa (TRP [1]) , p h i (TRP [2]) ; // ! columns

It is based on the forward operator MT1dModelling in src/em1dmodelling.h/cpp, giving back
a vector that consists of the amplitudes and phases for each period. Of course both have
completely different valid ranges. The phases a linearly related between 0 and π/2, whereas
the amplitudes are usually treated logarithmically. On the (1d block) model side, thickness
and apparent resistivity use log or logLU transforms as done for DC resistivity.

/∗ ! Model t r a n s f o r m a t i o n s : l o g f o r r e s i s t i v i t y and t h i c k n e s s ∗/
RTransLog transThk ;
RTransLogLU transRho (lbound , ubound) ;
/∗ ! Data t r a n s f o r m a t i o n s : l o g a p p a r e n t r e s i s t i v i t y , l i n e a r p h a s e s ∗/
RTransLog t ransRhoa ;
RTrans t r a n s P h i ;

Since amplitudes and phases are combined in one vector, we create a cumulative transformation
of the two by specifying their lengths. Similarly, the assumed relative error of the ρa and φ
are combined using a cat command.

Cumulat iveTrans< RVector > t r a n s D a t a ; // ! c o m b i n a t i o n o f two t r a n s
t r a n s D a t a . push back (transRhoa , nP) ; // ! append rhoa t r a n s (l e n g t h nP)
t r a n s D a t a . push back (t r a n s P h i , nP) ; // ! append p h i t r a n s
RVector e r r o r (c a t (RVector (nP , e r rRhoa /100) , RVector (e r r P h a s e / p h i))) ;

Similar to DC resistivity inversion, we create a 1d block mesh, initialise the forward operator
and set up options for the two regions (0-thicknesses,1-resistivities). Starting values for the ρi
and di are computed by the mean apparent resistivity and an associated skin depth.

MT1dModell ing f (T, n lay , f a l s e) ;
double medrhoa = median (rhoa) ; // ! median a p p a r e n t r e s i s t i v i t y
double medsk indepth = s q r t (median (T) ∗ medrhoa) ∗ 5 0 3 . 0 ; // ! s k i n d .
f . r e g i o n (0)−>setTransMode l (t ransThk) ; // ! t r a n s f o r m
f . r e g i o n (1)−>setTransMode l (t ransRho) ;
f . r e g i o n (0)−> s e t C o n s t r a i n t T y p e (0) ; // ! min . l e n g t h
f . r e g i o n (1)−> s e t C o n s t r a i n t T y p e (0) ;
f . r e g i o n (0)−> s e t S t a r t V a l u e (medsk indepth / n l a y) ;
f . r e g i o n (1)−> s e t S t a r t V a l u e (medrhoa) ;
/∗ ! Rea l v a l u e d i n v e r s i o n w i t h combined rhoa / p h i and f o r w a r d op . ∗/
R I n v e r s i o n i n v (c a t (rhoa , p h i) , f , v e r b o s e , dosave) ;

20

The rest is done as for DC resistivity block inversion. In Figure 8 the inversion result and its
resolution matrix is shown. The model is very close to the synthetic one and represents an
equivalent solution. This is also represented by the resolution matrix, where ρ1, ρ3 and d1 are
resolved almost perfectly, whereas ρ2 and d2 show slight deviations.

100 1000

0

500

1000

1500

2000

2500

3000

z
in

 m

ρ in Ωm

d
1

d
1

d
2

d
2

ρ
1

ρ
1

ρ
2

ρ
2

ρ
3

ρ
3

0.99

0.84

0.99

0.90

0.99

−1 −0.5 0 0.5 1
a b

Figure 8: a) Block 1d resistivity inversion result (red-synthetic model, blue-estimated model))
and b) resolution matrix

One can easily test the inversion only based on ρa or φ by increasing the errors of the others
by a large factor. According to (1) the corresponding weight goes to zero. By skipping φ
the model deviates slightly and the cell resolutions for ρ2 and d2 decrease to 0.9 and 0.86,
respectively. If the ρa are neglected the solution becomes obviously non-unique. Only d1 is
determined pretty well, the other parameters obtain cell resolutions of 0.6-0.8. Note also that
for local regularisation the resolution does not contain the resolution of the preceding models
(Friedel, 2003).

4.2. Combining different parameter types - offsets in travel time

Next, we consider a 2d travel-time tomographic problem. In the library there is a forward
operator called TTDijkstraModelling, which is using a Dijkstra (Dijkstra, 1959) algorithm
that restricts the ray paths to mesh edges. Although this is only an approximation, it is
sufficiently accurate for high-quality meshes. Assume the zero point (shot) of the traces is
not exactly known. This might be due to long trigger cables, problems in the device or
placing besides the profile. Aim is to include an unknown delay for each shot position into the
inversion9.
First, we derive a new forward modelling class TTOffsetModelling from the existing TTDijkstraModelling

(abbreviated by TTMod) since we want to use their functionality. Additionally to the existing
class we need the number of shot positions and a simple 0d/1d mesh holding the offset values
for them added to the original mesh.

c l a s s T T O f f s e t M o d e l l i n g : p u b l i c TTMod {
p u b l i c :

9A similar problem is the issue of static shift in MT inversion caused by local conductivity inhomogeneity,
which shifts the apparent resistivity curves.

21

T T O f f s e t M o d e l l i n g (Mesh & mesh , D a t a C o n t a i n e r & data)
: TTMod(mesh , data) {

// ! f i n d o c c u r i n g s h o t s , and map them to i n d i c e s s t a r t i n g from z e r o
s h o t s = u n i q u e (s o r t (d a t a C o n t a i n e r . g e t (” s ”))) ;
s t d : : cout << ” found ” << s h o t s . s i z e () << ” s h o t s . ” << s t d : : e n d l ;
f o r (s i z e t i = 0 ; i < s h o t s . s i z e () ; i++)

shotMap . i n s e r t (s t d : : p a i r< int , i n t >(s h o t s [i] , i)) ;
// ! c r e a t e new r e g i o n c o n t a i n i n g o f f s e t s w i t h s p e c i a l marker
o f f s e t M e s h = createMesh1D (s h o t s . s i z e ()) ;
f o r (s i z e t i = 0 ; i < o f f s e t M e s h . c e l l C o u n t () ; i++)

o f f s e t M e s h . c e l l (i) . s e t M a r k e r (NEWREGION) ;
reg ionManager () . c r e a t e R e g i o n (NEWREGION, o f f s e t M e s h) ;

}
. . .

The two functions response and createJacobian need to be overwritten. However we want to
expand the original functions by the changes needed. This is straight forward for the response
vector. First part of the model is the slowness vector whose response is calculated calling the
original function.

RVector T T O f f s e t M o d e l l i n g : : r e s p o n s e (const RVector & model){
// ! e x t r a c t s l o w n e s s from model and c a l l o l d f u n c t i o n
RVector s l o w n e s s (model , 0 , model . s i z e () − s h o t s . s i z e ()) ;
RVector o f f s e t s (model , model . s i z e () − s h o t s . s i z e () , model . s i z e ()) ;
RVector r e s p = TTMod : : r e s p o n s e (s l o w n e s s) ; // ! normal r e s p o n s e
RVector s h o t p o s = d a t a C o n t a i n e r −>g e t (” s ”) ;
f o r (s i z e t i = 0 ; i < r e s p . s i z e () ; i++){

r e s p [i] += o f f s e t s [shotMap [s h o t p o s [i]]] ;
}
return r e s p ;

}

For the Jacobian the case is a bit more complicated. Instead of increasing the size of the
matrix a-posteriori, we use a block matrix type H2SparseMapMatrix consisting of two horizontally
concatenated matrices called by H1() and H2() 10. The first is the normal way matrix holding
the path lengths. The second is a matrix with a value of 1 in the position of the shot number
and 0 elsewhere.

RVector T T O f f s e t M o d e l l i n g : : c r e a t e J a c o b i a n (H2Matrix & j a c o b i a n ,
const RVector & model){

// ! e x t r a c t s l o w n e s s from model and c a l l o l d f u n c t i o n
RVector s l o w n e s s (model , 0 , model . s i z e () − s h o t s . s i z e ()) ;
RVector o f f s e t s (model , model . s i z e () − s h o t s . s i z e () , model . s i z e ()) ;
TTMod : : c r e a t e J a c o b i a n (j a c o b i a n . H1 () , s l o w n e s s) ;
j a c o b i a n . H2 () . setRows (d a t a C o n t a i n e r −>s i z e ()) ;
j a c o b i a n . H2 () . s e t C o l s (o f f s e t s . s i z e ()) ;
// ! s e t 1 e n t r i e s f o r th e used s h o t
RVector s h o t p o s = d a t a C o n t a i n e r −>g e t (” s ”) ;
f o r (s i z e t i = 0 ; i < d a t a C o n t a i n e r −>s i z e () ; i++) {

j a c o b i a n . H2 () . s e t V a l (i , shotMap [s h o t p o s [i]] , 1 . 0) ;
}

10See appendix on matrices E for existing matrix types.

22

}

As a result the model vector holds both slowness values and the offsets, which can be sliced
out of the vector for individual post-processing.

4.3. What else?

• Full waveform TDR inversion?

• Gravity 2d or 3d inversion?

• what is enhanced?

23

5. Joint inversion

The term joint inversion denotes the simultaneous inversion of a number of different data types.
We can classify different types according to the relation of the associated parameters:

1. Identical parameters is historical the classical joint inversion, e.g. both DC and EM aim
at ρ.

2. Parameters are indirectly connected by petrophysical relations, e.g. ERT and GPR both
aiming at water content.

3. Independent parameters. In this case only the structures can be linked to each other. For
simple models this can involve the inversion of the geometry. For fixed models structural
information is exchanged11.

5.1. Classical joint inversion of DC and EM soundings

File doc/tutorial/code/joint/dcem1dinv.cpp

First, let us consider to jointly invert different electromagnetic methods, e.g. direct current
(DC) and Frequency Domain Electromagnetic (FDEM). For the latter we assume a two-coil
system in horizontal coplanar model with 10 frequencies between 110 Hz and 56 kHz. Whereas
DC resistivity yields apparent resistivities, the FDEM data are expressed as ratio between
secondary and primary field in per cent.
The two ready methods DC1dModelling and FDEM1dModelling are very easily combined since
they use the same block model. In the response function the two vectors are combined. We
create a new modelling class that derives from the base modelling class12 and has two members
of the individual classes, which must be initialized in the constructor. Alternatively we could
derive from one of the two classes and use only a member of the other.

c l a s s DCEM1dModelling : p u b l i c M o d e l l i n g B a s e {
p u b l i c :

DCEM1dModelling (s i z e t n lay , RVector & ab2 , RVector & mn2 ,
RVector & f r e q , double c o i l s p a c i n g , bool v e r b o s e) :

M o d e l l i n g B a s e (v e r b o s e) , // base c o n s t r u c t o r
fDC (n lay , ab2 , mn2 , v e r b o s e) , // FDEM c o n s t r u c t o r
fEM (n lay , f r e q , c o i l s p a c i n g , v e r b o s e) { // DC c o n s t r u c t o r

setMesh (createMesh1DBlock (n l a y)) ; // c r e a t e mesh
}
RVector r e s p o n s e (const RVector & model){ // p a s t e t o g e t h e r r e s p o n s e s

return c a t (fDC . r e s p o n s e (model) , fEM . r e s p o n s e (model)) ;
}

protected :
DC1dModel l ing fDC ;
FDEM1dModelling fEM ;

} ;

In the response function both response functions are called and combined using the cat com-
mand. We set the usual transformation (log for apparent resistivity and logLU for the re-
sistivity) and inversion (Marquardt scheme) options as above. In case of identical responses

11Note that this type is formally a structurally coupled cooperative inversion.
12In order to use the classes, dc1dmodelling.h and em1dmodelling.h have to be included.

24

(e.g. apparent resistivities) this would be the whole thing. Here we have to care about the
different data types (cf. section 4.1), i.e. always positive, log-distributed ρa from DC and
possibly negative, linearly distributed, relative magnetic fields. The transformations are again
combined using CumulativeTrans

RTransLog t ransRhoa ;
RTrans transEM ;
Cumulat iveTrans< RVector > t r a n s D a t a ;
t r a n s D a t a . push back (transRhoa , ab2 . s i z e ()) ;
t r a n s D a t a . push back (transEM , f r e q . s i z e () ∗ 2) ;

In the code we create a synthetic model synthModel, calculate the forward response and noisify
it by given noise levels.

/∗ ! compute s y n t h e t i c model (c r e a t e d b e f o r e) by c a l l i n g f ∗/
RVector synthData (f (synthModel)) ;
/∗ ! e r r o r models : r e l a t i v e p e r c e n t a g e f o r DC, a b s o l u t e f o r EM ∗/
RVector errorDC = synthData (0 , ab2 . s i z e ()) ∗ errDC / 1 0 0 . 0 ;
RVector errorEM (f r e q . s i z e () ∗ 2 , errEM) ;
RVector e r r o r A b s (c a t (errorDC , errorEM)) ;
/∗ ! n o i s i f y s y n t h e t i c data u s i n g t he d e t e r m i n e d e r r o r model ∗/
RVector rand (synthData . s i z e ()) ;
randn (rand) ;
synthData = synthData + rand ∗ e r r o r A b s ;

The inversion is converging to a χ2 value of about 1, i.e. we fit the data within error bounds.
Finally a resolution analysis is done to determine how well the individual parameters (2 thick-
nesses and 3 resistivities) are determined. We can compare it with single inversions by dras-
tically increasing the error level for one of the methods by a factor of 10. Table 1 shows the
resulting diagonal values of the resolution matrix for a three-layer model. The first layer is
well resolved in all variants except the first layer resistivity for EM. Considering the values
for the other resistivities we can clearly see that EM is detecting the good conductor and DC
describes the resistor as expected from the theory.

Method d1=20 m d2=20 m ρ1=200 Ωm ρ2=10 Ωm ρ3=50 Ωm

Joint inversion: 0.98 0.46 0.98 0.67 0.57
EM dominated: 0.97 0.36 0.71 0.66 0.20
DC dominated: 0.96 0.21 0.97 0.32 0.62

Table 1: Resolution measures for Joint inversion and quasi-single inversions using an error
model increased by a factor of 10.

5.2. Block joint inversion of DC/MRS data

If the underlying parameters of the jointed inversion are independent, a combination can only
be achieved via the geometry. For the case of a block 1d discretization both methods are
affected by the layer thicknesses.
Similar to the above example, we create a combined modelling class that is derived from one
method, in this case MRS1DBlockModelling. This one is a block model (water content and

25

thickness) variant of the magnetic resonance sounding (MRS) modelling MRSModelling. The
class has a DC resistivity forward modelling and holds the number of layers nlay.
The model is created in the constructor using createMesh1DBlock(nlay, 2) that is able to hold,
additionally to the thickness (region 0), multiple properties, here water content (region 1) and
resistivity (region 2). From the model vector the thickness, water content (or their combina-
tion) and resistivity has to be extracted and the result of the two forward calls are combined
using the cat command. The Jacobian is by default brute force, which is quite cheap for block
models.

c l a s s DC MRS BlockModel l ing : p u b l i c MRS1dBlockModel l ing{
p u b l i c :

DC MRS BlockModel l ing (s i z e t n lay , D a t a C o n t a i n e r & data , RMatrix & KR,
RMatrix & KI , RVector & zvec , bool v e r b o s e) :

MRS1dBlockModel l ing (n lay , KR, KI , zvec , v e r b o s e) , n l (n l a y) {
setMesh (createMesh1DBlock (n lay , 2)) ; //two−p r o p e r t i e s
Mesh mymesh = createMesh1DBlock (n l a y) ; // s i n g l e b l o c k mesh
fDC = new DC1dModel l ing (mymesh , data , n lay , v e r b o s e) ;

}
v i r t u a l ˜ DC MRS BlockModel l ing (){ de lete fDC ; }

RVector r e s p o n s e (const RVector & model){
// ! e x t r a c t r e s i s t i v i t y , w a t e r c o n t e n t & t h i c k n e s s from model vec
RVector thk (model , 0 , n l − 1) ;
RVector wcthk (model , 0 , n l ∗ 2 − 1) ;
RVector r e s (model , n l ∗ 2 − 1 , n l ∗ 3 − 1) ;
return c a t (MRS1dBlockModel l ing : : r e s p o n s e (wcthk) ,

fDC −>rhoa (r e s , thk)) ;
}

protected :
DC1dModel l ing ∗ fDC ;
i n t n l ;

} ;

In order to use the class, we have to build a cumulative data transform as in subsection 4.1.
Model transformations are logarithmic to ensure positive values, additionally an upper bound
of 0.4 is defined for the water content.

RTrans t r a n s V o l t ; // l i n e a r v o l t a g e s
RTransLog t ransRhoa ; // l o g a r i t h m i c a p p a r e n t r e s i s t i v i t i e s
Cumulat iveTrans< RVector > t r a n s D a t a ;
t r a n s D a t a . push back (t r a n s V o l t , errorMRS . s i z e ()) ;
t r a n s D a t a . push back (transRhoa , dataDC . s i z e ()) ;
RTransLog t r a n s R e s ;
RTransLogLU transWC (0 . 0 , 0 . 4) ;
RTransLog transThk ;

In order to achieve a Marquardt inversion scheme, the constraint type is set to zero for all
regions:

f . r eg ionManager () . s e t C o n s t r a i n t T y p e (0) ;

Appropriately, the transformations and starting values are set.

26

f . r e g i o n (0)−>setTransMode l (t ransThk) ;
f . r e g i o n (0)−> s e t S t a r t V a l u e (5 . 1) ;
f . r e g i o n (1)−>setTransMode l (transWC) ;
f . r e g i o n (1)−> s e t S t a r t V a l u e (0 . 1) ;
f . r e g i o n (2)−>setTransMode l (t r a n s R e s) ;
f . r e g i o n (2)−> s e t S t a r t V a l u e (median (dataDC . rhoa ())) ;

We use a synthetic model of three layers representing a vadoze zone (ρ = 500Ωm, 0.1% water,
4m thick), a saturated zone (ρ = 100Ωm, 40% water content, 10m thick) and a bedrock
(ρ = 2000Ωm, no water). 3 % and 20 nV Gaussian noise are added to the DC and MRS data,
respectively. Figure 9 shows the result of the combined inversion, which is very close to the
synthetic model due to the improved information content from two models.

0 0.1 0.2 0.3 0.40

2

4

6

8

10

12

14

16

18

water content

z
in

 m

10
2

10
3

0

2

4

6

8

10

12

14

16

18

ρ in Ωm

z
in

 m

Figure 9: Joint inversion result of block-coupled DC resistivity (left) and MRS (right) sounding.

5.3. Structurally coupled cooperative inversion of DC and MRS soundings

File doc/tutorial/code/joint/dc mrs joint1d.cpp

In many cases it is not clear whether the model boundaries observed by different methods
are identical or how many of them are existing. Nevertheless we expect a similarity of the
structure, i.e. the gradients. On smooth model discretizations of any dimension the exchange
of geometrical information can be achieved using the constraint control function (Günther and
Rücker, 2006). Main idea is to decrease the weight for the roughness operator of one method
depending on the partial derivative of the other. A large roughness as a possible interface
should enable the interface on the other side by a low weight. There are different possible
functions for doing so. Originally, a iteratively reweighted least squares scheme was proposed
that incorporates the whole distribution. Here we use a simple function

wc(r) =
a

|r|+ a
+ a (6)

where wc is the weight, r is the roughness value and a is a small quantity. For r → 0 the
weight wc = 1 + a lies slightly above 1, for r →∞ it becomes a.

27

In this case we apply it to DC resistivity and MRS sounding for a smooth 1d model. The
latter operator is linear and thus realized by a simple matrix vector multiplication of the
kernel function and the water content vector. We initialise the two independent inversions and
run one iteration step each. In the iteration loop we calculate the function of one roughness
and set it as constraint weight for the other before running another inversion step.

invMRS . s e t M a x I t e r (1) ;
invDC . s e t M a x I t e r (1) ;
invMRS . run () ; // ! i n i t and run 1 s t e p
invDC . run () ; // ! i n i t and run 1 s t e p
double a = 0 . 1 ;
RVector cWeight (n l a y − 1) ;
f o r (i n t i t e r = 1 ; i t e r < m a x I t e r ; i t e r++) {

cWeight = a / (abs (invDC . r o u g h n e s s ()) + a) + a ;
invMRS . setCWeight (cWeight) ;
cWeight = a / (abs (invMRS . r o u g h n e s s ()) + a) + a ;
invDC . setCWeight (cWeight) ;
invDC . oneStep () ;
invMRS . oneStep () ;

}

Figure 10 shows the inversion result for the above mentioned three-layer case. Without coupling
(a) the transitions between the layers are quite smooth. Much more significant jumps in both
parameters occur when structural coupling is applied (b) and make the interpretation of both
layer thickness and representative parameters less ambiguous.

100
1

10

100

ρ in Ωm

de
pt

h
in

 m

0 20 40
1

10

100

wc in %

de
pt

h
in

 m

estimated
synthetic

estimated
synthetic

100
1

10

100

ρ in Ωm

de
pt

h
in

 m

0 20 40
1

10

100

wc in %

de
pt

h
in

 m

estimated
synthetic

estimated
synthetic

a b

Figure 10: Synthetic model (red) and inversion results (blue) for DC (left) and MRS (right)
1D inversion without (a) and with (b) structural coupling

Of course the coupling does not have to affect the whole model. The constraint weight vector
can as well be set for an individual region such as the aquifer. See inversion templates on how
to do structural coupled inversion more easily and flexibly.

28

5.4. Petrophysical joint inversion

Target: water content in a soil column using GPR (CRIM equation) and DC (Archie equation)

TO BE IMPLEMENTED

Inversion

Inversion

φ,θ

φ,θ

φ,θ

GPR travel time

ERT voltage

CRIM

Archie

Inversionφ,θ φ,θ

GPR travel time

ERT voltage

CRIM

Archiea b

Figure 11: Scheme for separate inversion (a) and petrophysical joint inversion (b) of GPR and
ERT data to obtain an image of porosity or water content

29

6. Inversion templates

There are certain tasks that go beyond a classical inversion scheme but still are method-
independent. They can be formulated more generally in order to be applied to a wider range
of applications. There are several cases

Roll-along inversion: Geophysical data are often acquired along profiles. Since numerical work
usually goes by N2, it can be much more efficient to do the work piece-wise. However,
the continuity must be ensured.

Joint inversion: As described above, the different joint inversions do not have to be pro-
grammed individually. Furthermore, more than two methods can be coupled.

Time-lapse inversion: Although there are several approaches for efficient inversion along the
time axis, they are method-independent and can be formulated generally.

6.1. Roll-along inversion

BLA

6.2. Joint inversion

Assume we have inversions invA, invB and invC, which (or parts of which) are to be coupled.

Block inversion

Block inversion: mesh1d containing thickness and several parameters. TO BE IMPLE-
MENTED

Structural coupling

As described in section 5.3, the structural coupling consists mainly some preparation steps and
a main iteration for the coupling that does individual runs and coupling.
Generally, there can be two possibilities for each inversion: (i) to couple the whole inversion
model (as above) or (ii) to couple only one specified region. For example, structures in an
aquifer are to be imaged by cross-hole ERT and GPR. Whereas for the latter it is sufficient
to restrict to the aquifer, for ERT the unsaturated zone and a clay layer must be taken into
account.
For more than 2 inversions the coupling must be generalized: One can imaging a chain (or
ring) or a star scheme coupling. Whereas in the first the inversions are coupled pair-wise, in
the latter the constraint weights are mixed.

S C C I n v e r s i o n SCC ;
SCC . append (invA) ;
SCC . append (invB , reg ionnumber) ;
SCC . run () ;

Options: type of coupling, e.g. IRLS scheme or self-defined function. Ring or star connection.
Terminating criterion.

TO BE IMPLEMENTED

30

6.3. Time lapse inversion

Strategies

Example

References

Davis, T. A. (2006). Direct Methods for Sparse Linear Systems. SIAM Book Series on the
Fundamentals of Algorithms. SIAM, Philadelphia.

Dijkstra, E. W. (1959). Numerische Mathematik, chapter 1, pages 269–271.

Friedel, S. (2003). Resolution, stability and effiency of resistivity tomography estimated from
a generalized inverse approach. Geophys. J. Int., 153:305–316.

Günther, T. (2004). Inversion Methods and Resolution Analysis for the 2D/3D Reconstruction
of Resistivity Structures from DC Measurements. PhD thesis, University of Mining and
Technology Freiberg. available at http://fridolin.tu-freiberg.de.

Günther, T., Müller-Petke, M., Hertrich, M., and Rücker, C. (2008). The role of transforma-
tion functions in geophysical inversion. In Ext. Abstract, EAGE Near Surface Geophysics
Workshop. 15.-17.9.08, Krakow (Poland).

Günther, T. and Rücker, C. (2006). A general approach for introducing information into
inversion and examples from dc resistivity inversion. In Ext. Abstract, EAGE Near Surface
Geophysics Workshop. 4.-6.9.06, Helsinki(Finland).

Günther, T., Rücker, C., and Spitzer, K. (2006). 3-d modeling and inversion of DC resistivity
data incorporating topography - Part II: Inversion. Geophys. J. Int., 166(2):506–517.

Haber, E. (2005). Quasi-Newton methods for large-scale electromagnetic inversion problems.
Inverse Problems, 21:305–323.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of non-linear parameters.
J. Soc. Ind. App. Math., 11:431–441.

Shewchuk, J. R. (1996). Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator. In Lin, M. C. and Manocha, D., editors, Applied Computational Geometry:
Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer Science, pages
203–222. Springer-Verlag. From the First ACM Workshop on Applied Computational Ge-
ometry.

Si, H. (2003). TetGen: A 3D Delaunay Tetrahedral Mesh Generator. http://tetgen.

berlios.de.

Tarantola, A. (2001). Logarithmic parameters. http://web.ccr.jussieu.fr/tarantola/

Files/Professional/Papers_PDF/Music.pdf.

31

http://fridolin.tu-freiberg.de
http://tetgen.berlios.de
http://tetgen.berlios.de
http://web.ccr.jussieu.fr/tarantola/Files/Professional/Papers_PDF/Music.pdf
http://web.ccr.jussieu.fr/tarantola/Files/Professional/Papers_PDF/Music.pdf

A. Inversion properties

An inversion is a template class of the underlying data vector Vec and the matrix type Mat.
It is initialised with one of the following constructors:

// ! v e r y s i m p l e and empty i n v e r s i o n
I n v e r s i o n (bool v e r b o s e = f a l s e , bool dosave = f a l s e)
// ! Usua l i n v e r s i o n c o n s t r u c t o r w i t h data and FOP
I n v e r s i o n (Vec data , ModellingBase & forward , bool v e r b o s e , dosave)
// ! Complete c o n s t r u c t o r i n c l u d i n g t r a n s f o r m a t i o n s
I n v e r s i o n (Vec data , ModellingBase & forward ,

Trans & transData , Trans & transMode l , bool v e r b o s e , bool dosave)

The properties are not visible itself, instead there are setter and getter functions. Setters:

s e t R e l a t i v e E r r o r (double /Vec e r r o r) ; // ! s e t r e l a t i v e data e r r o r
s e t A b s o l u t e E r r o r (double /Vec e r r o r) ; // ! s e t a b s o l u t e data e r r o r
s e t F o r w a r d O p e r a t o r (ModellingBase & f o r w a r d) ; // ! s e t f o r w a r d o p e r a t o r
s e t T r a n s (t ransData , t r a n s M o d e l) ; // ! s e t t r a n s f o r m a t i o n s
s e t T r a n s D a t a (t r a n s D a t a) ; // ! s e t data t r a n s f o r m a t i o n
setTransMode l (t r a n s M o d e l) ; // ! s e t model t r a n s f o r m a t i o n
s e t L i n e S e a r c h (bool i s L i n e s e a r c h) ; // ! s w i t c h l i n e s e a r c h on/ o f f
se tRobustData (bool i s R o b u s t) ; // ! IRLS (r o b u s t) data w e i g h t i n g
s e t B l o c k y M o d e l (bool i s B l o c k y) ; // ! IRLS (b l o c k y) model c o n s t r a i n t s
setLambda (double lambda) ; // ! r e g u l a r i s a t i o n s t r e n g t h
setOpt imizeLambda (bool optLambda) ; // ! L−c u r v e o p t i m i z a t i o n
s e t M a x I t e r (i n t m a x I t e r) ; // ! d e f i n e maximum i t e r a t i o n number
setMode l (Vec model) ; // ! s e t model v e c t o r
s e t M o d e l R e f (Vec r e f e r e n c e M o d e l) ; // ! s e t r e f e r e n c e model v e c t o r
setCWeight (Vec cWeight) ; // ! s e t c o n s t r a i n t c o n t r o l v e c t o r
setMWeight (mWeight) ; // ! s e t model c o n t r o l v e c t o r

Getter

ModellingBase & f o r w a r d O p e r a t o r () ; // ! f o r w a r d o p e r a t o r
u i n t boundaryCount () , modelCount () , dataCount () ; // ! # b o u n d a r i e s / c e l l s / data
bool l i n e S e a r c h () , b lockyMode l () , r o b u s t D a t a () , opt imizeLambda () ; // ! o p t i o n s
double getLambda () ; // ! r e g u l a r i s a t i o n s t r e n g t h
i n t m a x I t e r () ; // ! maximum i t e r a t i o n number
Vec model () , r e s p o n s e () , r o u g h n e s s () ; // ! model / r e s p o n s e / r o u g h n e s s v e c t o r
Vec cWeight () , mWeight () ; // ! c o n s t r a i n t / model c o n t r o l v e c t o r
getPhiD () , getPhiM () , g e t P h i () , g e t C h i 2 () ; // ! o b j e c t i v e f u n c t i o n p a r t s

Run inversion and other actions

Vec model = run () ; // ! r u n s t he whole i n v e r s i o n
Vec model = oneStep () ; // ! r u n s one i n v e r s i o n s t e p
Vec model = runChi1 () ; // ! r u n s c h a n g i n g lambda such t h a t c h i ˆ2=1
r o b u s t W e i g h t i n g () ; // ! a p p l i e s r o b u s t data w e i g h t i n g
c o n s t r a i n B l o c k y () ; // ! a p p l y b l o c k y model c o n t r a i n t s
e c h o S t a t u s () ; // ! echo c h i 2 / p h i / phiD /phiM/ i t e r a t i o n
Vec m o d e l C e l l R e s o l u t i o n (i R e s) ; // ! compute a column o f r e s o l u t i o n m a t r i x

32

B. Mesh types and mesh generation

There are different mesh types and ways how to generate them. There is only one base
mesh class holding the nodes/vertices/coordinates, cells (defined by the bounding vertices)
and boundaries revealing the neighboured cells. Every node, cell and boundary has a marker
that defines the behaviour in modelling (e.g. an electrode node or boundary conditions) or
inversion (e.g. the region number or a known sharp boundary).

0d mesh

Zero dimension means that there are several parameters without any neighbouring relation.
Consequently 0th order constraints are used. There is no special mesh generator, instead a 1d
mesh is created and the constraint type is set to zero. Alternatively, the forward operator is
initialised without mesh and the parameter number is set by setParameterCount.

1d mesh

A real 1d mesh subdivides the subsurface in vertically or horizontally aligned elements and
can be created by the following functions:

/∗ ! G e n e r a t e 1d mesh w i t h n C e l l s c e l l s (s i z e 1) and n C e l l s +1 nodes ∗/
Mesh createMesh1D (u i n t n C e l l s , u i n t n C l o n e s = 1) ;
/∗ ! G e n e r a t e s i m p l e one d i m e n s i o n a l mesh w i t h nodes i n RVector pos ∗/
Mesh createMesh1D (const RVector & x) ;

nClones can be used to create models for different parameters such as resistivity and phase.
Result is one mesh with two sub-meshes that are individual regions. See section 3.1 for an
example.

1d block model

A 1d block model consists of (nLayers-1) thicknesses and nLayers values for a number of
properties. The thicknesses and properties are individual 1d meshes.

/∗ ! G e n e r a t e 1D b l o c k model o f t h i c k n e s s e s and p r o p e r t i e s ∗/
Mesh createMesh1DBlock (u i n t nLayers , u i n t n P r o p e r t i e s = 1) ;

See section 3.2 for a resistivity block inversion or 5.2 for joint block inversion using two prop-
erties.

2d regular mesh

A regular (FD like) 2d model consists of regularly spaced rectangles. They can be created by
the number of elements in x- or y-direction or vectors of the enclosing nodes:

/∗ ! G e n e r a t e s i m p l e 2d mesh w i t h xDim∗yDim c e l l s o f s i z e 1 ∗/
Mesh createMesh2D (u i n t xDim , u i n t yDim) ;
/∗ ! G e n e r a t e s i m p l e 2d mesh from node v e c t o r s x and y ∗/
Mesh createMesh2D (const RVector & x , const RVector & y) ;

33

2d general mesh

Generally a 2d mesh - a regular one is just a special case - can consist of triangles or quadrangles
(deformed rectangles) or a mix of it. They are created by mesh generators such as triangle
(Shewchuk, 1996). Input for the mesh is a piece-wise linear complex (PLC) comprising nodes
edges and region markers. Meshing is done externally and loaded using Mesh.load(filename); .

3d regular mesh

A regular (FD like) 3d model consists of regularly spaced hexahedra. They can be created by
the number of elements in x/y/z-direction or vectors of the enclosing nodes:

/∗ ! G e n e r a t e r e g u l a r 3d mesh w i t h xDim∗yDim∗zDim c e l l s o f s i z e 1 ∗/
Mesh createMesh3D (u i n t xDim , u i n t yDim , u i n t zDim) ;
/∗ ! G e n e r a t e r e g u l a r 3d mesh from node v e c t o r s x , y and z ∗/
Mesh createMesh3D (const RVector & x , & y , & z) ;

3d general mesh

At the moment, a 3d mesh can consist of tetrahedrons or hexahedrons, but prisms or pyramids
could be easily implemented.

34

C. Region properties and region map file

Some properties can be set for each region individually using f . region(i).

s e t M a r k e r (i n t marker) ;
se tBackground (bool background) ;
s e t S i n g l e (bool s i n g l e) ;
s e t S t a r t V e c t o r (const RVector & s t a r t) ;
s e t S t a r t V a l u e (double s t a r t) ;
s e t M o d e l C o n t r o l (double mc) ;
s e t M o d e l C o n t r o l (const RVector & mc) ;
s e t B o u n d a r y C o n t r o l (double or RVector bc) ;

%setZPower (double zpower) ;
setZWeight (double z w e i g h t) ;
se tTransMode l (Trans & tM) ;
s e t C o n s t r a i n t T y p e (u i n t t y p e) ;
setLowerBound (double l b) ;
setUpperBound (double ub) ;

u i n t parameterCount () , boundaryCount () ; // ! p a r a m e t e r s / b o u n d a r i e s

The region manager controls the individual regions. It is initialised from the forward operator
and interprets the mesh with its markers

setMesh (const Mesh & mesh) ;
Region ∗ c r e a t e R e g i o n (i n t marker , const Mesh & mesh) ; // ! c r e a t e r e g i o n
Region ∗ r e g i o n (i n t marker) ; // ! g e t an i n d i v i d u a l r e g i o n by marker
u i n t parameterCount () , c o n s t r a i n t C o u n t () , boundaryCount () ; // ! c o u n t e r s
RVector c r e a t e S t a r t V e c t o r () ; // ! c r e a t e s t a r t i n g model v e c t o r
RVector c r e a t e M o d e l C o n t r o l () , c r e a t e B o u n d a r y C o n t r o l () ; // ! c r e a t e v e c t o r s
RVector c r e a t e F l a t W e i g h t (double zPower , double minZWeight) ; // ! zpower
loadMap (const s t d : : s t r i n g & fname) ; // ! s e t r e g i o n p r o p e r t i e s from f i l e

The latter region map file simplifies the setting of region properties and is comfortable for
testing different values. It is a column file with the description of the columns in the first row
after a # sign:

#No start Ctype MC zWeight Trans lBound uBound

0 100 1 1 0.2 log 50 1000

1 30 0 0.2 1 log 10 200

The example represents a two layer case, e.g. an unsaturated (0) and a saturated (1) zone with
different starting resistivities. Smoothness constraints with enhanced layering is applied in the
first and minimum length in the latter. Both use a log/logLU transformation with specific
upper and lower bounds.
Instead of the number, an asterisk (*) can be used to set properties for all regions. In one
region file, several blocks as above can be stated, e.g.

#No start Trans

* 100 log

#No lBound uBound

1 20 300

2 50 1000

35

defines an equal model transformation and starting value, but different lower and upper bounds.
There are two special types of regions: background and single regions. The background region
is not part of the inversion, the values are prolongated (filled up) for the forward run. On
the contrary, the cells of a single region are held constant and treated as one parameter in
inversion. They are specified as above using the keywords background and single, e.g.

#No single

* 1

#No background

0 1

defines all regions as single parameter regions except number zero, which is background.
By default, regions are decoupled from each other, i.e. there are no smoothness contraints
at the boundary. However, it might be useful to have those, e.g. by constraining a region of
known parameters by borehole data to the neighboring cells or just to stabilize inversion. In
this case, inter-region constraints can be defined in the region file. The text

#Inter-region

* * 0.1

1 2 1

sets weak connection between all regions, except regions 1 and 2 are normally connected.

36

D. Transformation functions

For data and model parameter arbitrary transformations can be applied. A transformation is
a C++ class derived from a base class (the identity transformation), which mainly consists of
four functions, each returning a vector for a given vector:

trans the forward transformation function: y(x)

invTrans the inverse of the function: x(y)

deriv the derivative of the function: y′(x)

error the transformation of associated errors δy(δx)

The latter is defined in the base class. The inversion as mathematical operation is done in the
y domain, whereas the physics is described in the x domain.
Besides the presented transformations, you can define your own transformations by deriving
from the base class and overwriting the first three functions. If the inverse transformation
is not known analytically, there is a class TransNewton, in which the inverse function is
obtained by Newton iteration.
However, there are a lot of already existing transformation classes that can be used or combined:

Basic transforms

TransLinear (a,b): y(x) = a ∗ x+ b

TransPower (n): y(x) = xn

TransExp (x0,y0): y(x) = y0 · e−x/x0

TransInv : y(x) = 1/x (specialisation of TransPower)

TransLog : y(x) = log(x)

Range transforms

The logarithm restricts x to be positive, i.e. sets a lower bound 0. Instead of 0, a lower bound
xl can be set. By combining two logarithmic functions a lower and an upper bound can be
combined. Similar can be obtained by a cotangens function.

TransLog (xl): y(x) = log(x− xl)

TransLogLU (xl,xu): y(x) = log(x− xl)− log(xu − x)

TransCotLU (xl,xu): y(x) = − cot((x− xl)/(xu − x) · π)

37

Combination

Different transformations can be combined by either
TransNest(y1,y2): y(x) = y1(y2(x))
TransAdd(y1,y2): y(x) = y1(x) + y2(x)
Since for the latter the inverse cannot be combined by the two inverses, it is derived from
transNewton, a base class whose inverse is achieved by a Newton iteration. So any not-so-easily-
invertible function can be derived from transNewton and does not require to define invTrans.
There is a cumulative transformation CumulativeTrans, which applies a vector of transformations
for different part of the model. This meta-transformation is applied in the region technique
but can also be defined for one region. More often it is used to combine different data or model
types, see sections 4.1, 4.2 and 5.1 for examples.

Special transformations

Some geophysically relevant transformations have been already defined:

TransLogMult (y0) is a TransNest of TransLog and TransMult: y(x) = y0 log(x0), e.g.
for using the logarithm of the apparent resistivity (ρa = GR)

TransCRIM (φ,εm,εw): the complex refractive index model (CRIM) - derived from TransLin-
ear

TransArchie (ρw) - Archie’s equation, derived from TransPower

Note that there are predefined types based on real (double) vectors beginning with an R, e.g.
RTransLogLU is actually TransLogLU< RVector >.

E. Vectors and Matrix types

std :: vector

template< class ValueType > class Vector

RVector,FVector, BVector, IVector

load/save

complex values using Complex = std :: complex<double> as a vector CVector

template < class ValueType > class Matrix

RMatrix, FMatrix

load/saveMatrixCol

template< class ValueType, class IndexType > class SparseMapMatrix

RSparseMapMatrix for double and unsigned int
modelling column-compressed sparse matrix SparseMatrix

E.1. Block-Matrices

Large matrices for Jacobian (J) and constraint matrix (C)
holding individual matrices by stacking matrices saves space and makes allocation easier
Horizontal stacking (H types): individual models (or model parts)
Vertical stacking (V types): individual data (J) or constraints (C)

38

2 matrices (2) of arbitrary type, N matrices (N) of identical type, repetition (R) of identical
matrices
H2Matrix< Matrix1, Matrix2 > example: 2 data sets for 1 model
V2Matrix< Matrix1, Matrix2 > example: 1 model, 2 data sets
D2Matrix< Matrix1, Matrix2 > example: 2 models, 2 data sets
HNMatrix< Matrix > example: LCI
VNMatrix< Matrix > (N vertical identical matrices)
DNMatrix< Matrix > (diagonal matrices, Block-Jacobi) example: LCI (identical models with
individual Jacobians)
DRMatrix< Matrix > (example:

39

	Introduction
	GIMLi – concept and overview
	Minimisation and regularization methods
	Transformation functions
	Parameterisation and the region technique
	Obtaining and building GIMLi
	Outline of the document

	A very simple example - polynomial curve fitting
	The first program in C++
	A first Python program
	An own Jacobian

	General concepts using 1D DC resistivity inversion
	Smooth inversion
	Block inversion
	Resolution analysis
	Structural information
	Regions

	Enhanced techniques
	Combining different data types - MT 1d inversion
	Combining different parameter types - offsets in travel time
	What else?

	Joint inversion
	Classical joint inversion of DC and EM soundings
	Block joint inversion of DC/MRS data
	Structurally coupled cooperative inversion of DC and MRS soundings
	Petrophysical joint inversion

	Inversion templates
	Roll-along inversion
	Joint inversion
	Time lapse inversion

	Inversion properties
	Mesh types and mesh generation
	Region properties and region map file
	Transformation functions
	Vectors and Matrix types
	Block-Matrices

