
An algorithm for refraction tomography

Introduction

In Geophysics refraction of seismic waves is used to detect fast subsurface layers, since from a
certain offset the refracted wave arrives earlier than the ground wave. From the slope of the
travel time curve we can determine the velocities. Sharp bends give allow for calculating the
depth of layer boundaries.

The seismic velocity v is the partial derivative of the path length l with respect to time t,
v = ∂l/∂t. Typical values are some 100 m/s for unconsolidated sediments up to several 1000
m/s for solid rocks. Often the reciprocal, the slowness s = 1/v is considered. In the following
we present an algorithm that acquires the velocity as a spatial function, i.e. it enables a
tomography of the earth on the basis of seismic travel time data. It does not play a role if
Refraction (Ra) data are used (from only one side) or tomography between boreholes or at
excavated objects is applied. Note that reflections are not considered.

Refraction tomography has been used since the 80s, e.g., White (1989) provides an overview.
They mainly consist of a ray propagation computation and inverse projections such as itera-
tive reconstruction techniques. Zhang et al. (1998) addresses different inversion methods and
resolution analysis. Practical details are covered by, e.g., Lanz et al. (1998).

Forward problem

The forward problem is to simulate the ray propagation for a given slowness distribution s(~r)
in order to predict the first arrivals. This procedure is often referred to as ray tracing.

The total travel time is the integral over the whole path l

t =
∫

l
dt =

∫
l

dl

v
=

∫
L

s dl . (1)

We subdivide the modeling domain in M model cells of constant1 slowness si and transfer
the integral into a sum

t =
M∑
i=1

lisi . (2)

Equation (2) can be posed as matrix-vector-product

t = Ls , (3)

where t is the travel time vector of the N measurements and s is the vector of slowness values
si. The matrix L is referred to as path matrix and contains in the elements Lij the path length
of the ith ray through the jth element. Since every ray covers only a few cells, this matrix is
generally sparse.

In general there are different methods:

1. With the ray method a bundle of rays is tracked using refraction laws and the incident
angle is varied until the fastest ray reaches the arrival point. The calculated ray path is
exact due to the analytical relations.

1The discretization may also be done using gradient models.
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2. From the wave equation we derive the Eikonal equation

|∇T (~r)| = s(~r) bzw. (∇T )2 = s2 , (4)

for the travel time function T , which has to be solved by appropriate numerical meth-
ods, e.g. finite elements. The accuracy of the approximate solution can be arbitrarily
improved by refining the mesh.

3. An inexact method is the path method. The rays are restricted to the edges of the
mesh and, thus, a weighted Shortest path problem is solved, as it is the case for routing
machines. Since not every path can be used, the travel times are always overestimated.
However the discrepancy diminishes with increasing refinement.

Initially we use 3. (Shortest Path), because it is easy to implement and agrees with the
perception of refraction according to Huygens law. In case of 1. the back refraction from a
fast layer is a problem to be solved. A fundamental idea is Dijkstra’s algorithm (Dijkstra,
1959). Starting from the shot point a tree of travel times is spanned which spreads on the
whole domain. It can be improved by adapted data structured (Fibonacci heap).

The A* algorithm is a generalization of Dijkstra’s method for non-positive weights. It is
much faster by the introduction of an upper bound (e.g. free air path). However the advantage
disappears, since for each geophone the problem has to be resolved, whereas Dijkstra solves
the problem for all at once. Therefore we use the latter which is independent on the mesh
dimension.

For the calculation appropriate meshes has to be created. Structured meshes show preferred
directions and cumber a physically realistic ray propagation. Unstructured meshes have the
additional advantage of being able to involve surface topography. With the triangle algorithm
of Shewchuk (1996) a 2d mesh is created on the basis of given number of fixed nodes in such
a way that the mesh meets quality criteria (preferably uniform triangles).

The generation of three-dimensional meshes is a bigger problem. A large flexibility is ob-
tained by tetrahedral meshes that can be created, e.g., by the free mesh generator TetGen (Si,
2003) according to similar principles.

Inverse problem

Objective is to find a (plausible) velocity distribution that is able to explain the measured
travel times, i.e. to find an inverse operator. The way propagation itself is a linear operator.
Since the ray path (especially for refraction seismics) depends critically on the velocities, the
inverse problem is highly non-linear and has to be solved iteratively. Starting from a model
s0 new models are created successively based on the discrepancy of data and model response,
solving

sk+1 = sk + ∆sk = sk + L†(sk)(t− L(sk)sk) ,

then L is recomputed and so on. L† is the used inverse operator.
Classical methods for ray problems are algebraic reconstruction techniques (ART) and the

simultaneous iterative reconstruction technique (SIRT). Moreover truncated SVD inversions
(tsvd) are used since its resolution properties are easily accessible (White, 1989). With regard
to a joint inversion we want to apply a quadratic minimization problem. The function to be
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minimized is the sum of the squared discrepancies between data t and model response Ls

Φd =
N∑

i=1

ti − (Ls)i = ‖t− Ls‖2
2 → min . (5)

The application of the Gauss-Newton method leads to the normal equations

∆sk = (LTL)−1LT (t− Lsk) .

However we find this method to be instable with respect to data errors. Therefore we
need to regularize the problem by introducing a model functional Φm, which is weighed by a
regularization parameter λ

Φ = Φd + λΦm mit Φ = ‖Cs‖2
2 .

C is an operator, whose image has to be minimized. Typical is a derivative enforcing a
smooth slowness distribution. The according normal equations are

∆sk = (LTL + λCTC)−1(LT (t− Lsk)− λCTCs) . (6)

Equation 6 is solved until Φ stagnates. The value δt =
√

Φd/N shows the mean quadratic
deviation (MQD). The regularization parameter controls the model smoothness and has to be
chose such that δt reflects the measuring errors.

At the beginning of the inversion an appropriate parameterization has to be chose. It is
determined by the shot/geophone positions and the desired maximum depth (depends on the
used offsets). To enable a change in a certain cell, it must be covered by at least one ray path.
In order to get a good coverage we start with a gradually layered model (White, 1989) or a
multi-layer model (Lanz et al., 1998). The velocities may be extracted from the common offset
stack.

The ray coverage is a first measure to evaluate the model, e.g. uncovered cells may be
blanked. More sophisticated studies use the resolution analysis to quantify the reliability of
inversion results (Zhang et al., 1998).

The model parameter to be reconstructed may also be the velocity. For this the matrix L
in the inverse problem is multiplied by the inner derivative, ∂v/∂s = −1/s2, of the individual
model cells. Both methods may enhance slow or fast structured. A possible alternative is
the use of the logarithm as model parameter. The weighting function is then −1/s. In our
experience it provides the stablest results which can be proved by observing the singular value
spectra.

Application to field data

We want to apply the method to field data. A 50m long profile in Königssee was obtained to
detect the bedrock surface. Figure 1 shows the shot points and their measured travel times
color-coded.

The curve slopes decrease with increasing offset showing a fast layer in depth. However, the
strong variations do also show that the earth is not one-dimensional. From the variation we
get a first concept of measuring errors in a range of milliseconds.

The first shot cuts the abscissa at the same point as the second, the same is the case for the
last shot. Since this indicates positioning errors, the first and last shots are neglected in the
following.
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Figure 1: Field data on profile 1:travel times for the individual shot points as function of space,
the stars denote the shot locations

Model depth was chosen 15m, one has to find an optimum together with the velocities.
Those were determined by the common-offset stack to be vmin = 500m/s und vmax = 1500m/s.
According to their midpoints to every triangle a velocity is associated by interpolation show
in Fig. 2.

To clarify the the ray propagation the paths for the first shot are plotted. In ideal case (very
fine discretization) they show parable shape. Generally this can be recognized. However there
are deviations due to the restricted ray paths as well as the discontinuous velocity distribution.

The regularization parameter has been chosen in such a way that the MQD agrees with the
estimated error of 1 ms, i.e., the data are fitted within error bounds (discrepancy principle)
under the consumption of Gaussian noise. A smaller regularization improves the data fit but
shows non-resolvable structures, whereas a stronger regularization cannot fit the data well.

Figure 3 shows the inversion result after 4 iterations. Near the surface, especially in the
right part, we see a layer of low velocity (600-800m/s), which can be interpreted as unconsol-
idated topsoil. From a depth of approx. 5 m on a layer of horizontally varying high velocity
(>2000 m/s) is visible, which we interpret as bedrock. Since cells without ray coverage are
not determined by the data, they are blanked. With a few exceptions these are the boundary
parts and larger depths giving clue to a better parameterization.

Figure 4 shows the fit of the data (crosses) by the model response (solid line). Most data
are met with sufficient quality. However there are parts of the travel time curves, e.g. at their
beginning and end, that can’t be explained with the permitted complexity. This may be due
to higher inhomogeneities at the near-surface layers as well as systematic errors.
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Figure 2: Starting model: velocity distribution and ray paths for first shot

Conclusions

Firstly a refraction tomography can be done with simple means, i.e., Shortest Path forward
solver and Gauss-Newton inversion. However the ray paths are not completely realistic. Finer
meshes allow for better approximation of ray paths, but may create smearing effects (White,
1989) and do moreover not conform the resolution properties. We expect the bias by the
approximate forward solution to occur throughout the model and thus cause no structural
deformations. An improvement of the forward solver will be done solving the Eikonal equation.

The inverse problem is, compared to potential methods, similarly ill-posed and has also to
be regularized. A sophisticated error-estimation may avoid over- or underfitting the data. The
non-linearity and thus the dependence from a starting model is much stronger. Resolution
studies may help to restrict the diversity of models.

A basic principle is the application of different methods to obtain more reliable models.
Ideally this will be done in the framework of a joint inversion, e.g. with dc resistivity data, since
this works on similar depth ranges. Special attention has to be payed to the parameterization
and the use of identical meshes or appropriate interpolation algorithms.
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Figure 3: Inversion result: velocity distribution with ray paths for first shot point
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Figure 4: Comparison of measured (crosses) data and model response (lines)
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